Advertisement

The Pharmacogenetics of Antipsychotic Treatment

  • Gavin P. ReynoldsEmail author
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 212)

Abstract

There is substantial interindividual variability in the effects of treatment with antipsychotic drugs not only in the emergence of adverse effects but also in symptom response. It is becoming increasingly clear that much of this variability is due to genetic factors; pharmacogenetics is the study of those factors, with the eventual goal of identifying genetic predictors of treatment effects. There have been many reported associations of single nucleotide polymorphisms (SNPs) in candidate genes with the consequences of antipsychotic drug treatment. Thus variations in dopaminergic and serotoninergic genes may influence positive and negative symptom outcome, respectively. Among the adverse effects, tardive dyskinesia and weight gain have been the most studied, with some consistent associations of functional SNPs in genes relating to pharmacological mechanisms. Technological advance has permitted large-scale genome-wide association studies (GWAS), but as yet there are few reports that replicate prior findings with candidate genes. Nevertheless, GWAS may identify associations which provide new clues relating to underlying mechanisms.

Keywords

Schizophrenia Negative symptoms Positive symptoms Adverse effects Association studies Candidate gene Single nucleotide polymorphism Receptors Weight gain Extrapyramidal side effects 

References

  1. Aberg K, Adkins DE, Bukszar J, Webb BT, Caroff SN, Miller DD, Sebat J, Stroup S, Fanous AH, Vladimirov VI, McClay JL, Lieberman JA, Sullivan PF, van den Oord EJ (2010a) Genomewide association study of movement-related adverse antipsychotic effects. Biol Psychiatry 67:279–282. doi:10.1016/j.biopsych.2009.08.036PubMedGoogle Scholar
  2. Aberg K, Adkins DE, Liu Y, McClay JL, Bukszar J, Jia P, Zhao Z, Perkins D, Stroup TS, Lieberman JA, Sullivan PF, van den Oord EJ (2010b) Genome-wide association study of antipsychotic-induced QTc interval prolongation. Pharmacogenomics J. doi:10.1038/tpj.2010.76Google Scholar
  3. Adams DH, Close S, Farmen M, Downing AM, Breier A, Houston JP (2008) Dopamine receptor D3 genotype association with greater acute positive symptom remission with olanzapine therapy in predominately caucasian patients with chronic schizophrenia or schizoaffective disorder. Hum Psychopharmacol 23:267–274. doi:10.1002/hup. 930PubMedGoogle Scholar
  4. Adkins DE, Aberg K, McClay JL, Bukszar J, Zhao Z, Jia P, Stroup TS, Perkins D, McEvoy JP, Lieberman JA, Sullivan PF, van den Oord EJ (2011) Genomewide pharmacogenomic study of metabolic side effects to antipsychotic drugs. Mol Psychiatry 16:321–332. doi:10.1038/mp. 2010.14PubMedGoogle Scholar
  5. Al Hadithy AF, Wilffert B, Stewart RE, Looman NM, Bruggeman R, Brouwers JR, Matroos GE, van Os J, Hoek HW, van Harten PN (2008) Pharmacogenetics of parkinsonism, rigidity, rest tremor, and bradykinesia in African-Caribbean inpatients: differences in association with dopamine and serotonin receptors. Am J Med Genet B Neuropsychiatr Genet 147B:890–897. doi:10.1002/ajmg.b.30746PubMedGoogle Scholar
  6. Alkelai A, Greenbaum L, Rigbi A, Kanyas K, Lerer B (2009) Genome-wide association study of antipsychotic-induced parkinsonism severity among schizophrenia patients. Psychopharmacology (Berl) 206:491–499. doi:10.1007/s00213-009-1627-zGoogle Scholar
  7. Anttila S, Kampman O, Illi A, Rontu R, Lehtimaki T, Leinonen E (2007) Association between 5-HT2A, TPH1 and GNB3 genotypes and response to typical neuroleptics: a serotonergic approach. BMC Psychiatry 7:22. doi:10.1186/1471-244X-7-22PubMedGoogle Scholar
  8. Arranz MJ, de Leon J (2007) Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry 12:707–747. doi:10.1038/sj.mp. 4002009PubMedGoogle Scholar
  9. Arranz MJ, Munro J, Birkett J, Bolonna A, Mancama D, Sodhi M, Lesch KP, Meyer JF, Sham P, Collier DA, Murray RM, Kerwin RW (2000) Pharmacogenetic prediction of clozapine response. Lancet 355:1615–1616PubMedGoogle Scholar
  10. Athanasiou MC, Dettling M, Cascorbi I, Mosyagin I, Salisbury BA, Pierz KA, Zou W, Whalen H, Malhotra AK, Lencz T, Gerson SL, Kane JM, Reed CR (2011) Candidate gene analysis identifies a polymorphism in HLA-DQB1 associated with clozapine-induced agranulocytosis. J Clin Psychiatry 72:458–463. doi:10.4088/JCP.09m05527yelPubMedGoogle Scholar
  11. Benmessaoud D, Hamdani N, Boni C, Ramoz N, Hamon M, Kacha F, Gorwood P (2008) Excess of transmission of the G allele of the -1438A/G polymorphism of the 5-HT2A receptor gene in patients with schizophrenia responsive to antipsychotics. BMC Psychiatry 8:40. doi:10.1186/1471-244X-8-40PubMedGoogle Scholar
  12. Bertolino A, Caforio G, Blasi G, Rampino A, Nardini M, Weinberger DR, Dallapiccola B, Sinibaldi L, Douzgou S (2007) COMT Val158Met polymorphism predicts negative symptoms response to treatment with olanzapine in schizophrenia. Schizophr Res 95:253–255. doi:10.1016/j.schres.2007.06.014PubMedGoogle Scholar
  13. Bishop JR, Ellingrod VL, Moline J, Miller D (2006) Pilot study of the G-protein beta3 subunit gene (C825T) polymorphism and clinical response to olanzapine or olanzapine-related weight gain in persons with schizophrenia. Med Sci Monit 12:BR47–50PubMedGoogle Scholar
  14. Bishop JR, Ellingrod VL, Moline J, Miller D (2005) Association between the polymorphic GRM3 gene and negative symptom improvement during olanzapine treatment. Schizophr Res 77:253–260. doi:10.1016/j.schres.2005.04.001PubMedGoogle Scholar
  15. Bishop JR, Miller DD, Ellingrod VL, Holman T (2011) Association between type-three metabotropic glutamate receptor gene (GRM3) variants and symptom presentation in treatment refractory schizophrenia. Hum Psychopharmacol. doi:10.1002/hup.1163; 10.1002/hup.1163Google Scholar
  16. Calarge CA, Ellingrod VL, Acion L, Miller DD, Moline J, Tansey MJ, Schlechte JA (2009) Variants of the dopamine D2 receptor gene and risperidone-induced hyperprolactinemia in children and adolescents. Pharmacogenet Genomics 19:373–382. doi:10.1097/FPC.0b013e328329a60fPubMedGoogle Scholar
  17. Chagnon YC, Bureau A, Gendron D, Bouchard RH, Merette C, Roy MA, Maziade M (2007) Possible association of the pro-melanin-concentrating hormone gene with a greater body mass index as a side effect of the antipsychotic olanzapine. Am J Med Genet B Neuropsychiatr Genet 144B:1063–1069. doi:10.1002/ajmg.b.30554PubMedGoogle Scholar
  18. Chagnon YC, Merette C, Bouchard RH, Emond C, Roy MA, Maziade M (2004) A genome wide linkage study of obesity as secondary effect of antipsychotics in multigenerational families of eastern Quebec affected by psychoses. Mol Psychiatry 9:1067–1074. doi:10.1038/sj.mp. 4001537PubMedGoogle Scholar
  19. de Leon J, Correa JC, Ruano G, Windemuth A, Arranz MJ, Diaz FJ (2008) Exploring genetic variations that may be associated with the direct effects of some antipsychotics on lipid levels. Schizophr Res 98:40–46. doi:10.1016/j.schres.2007.10.003PubMedGoogle Scholar
  20. Dolzan V, Serretti A, Mandelli L, Koprivsek J, Kastelic M, Plesnicar BK (2008) Acute antipyschotic efficacy and side effects in schizophrenia: association with serotonin transporter promoter genotypes. Prog Neuropsychopharmacol Biol Psychiatry 32:1562–1566. doi:10.1016/j.pnpbp. 2008.05.022PubMedGoogle Scholar
  21. Ellingrod VL, Lund BC, Miller D, Fleming F, Perry P, Holman TL, Bever-Stille K (2003) 5-HT2A receptor promoter polymorphism, -1438 G/A and negative symptom response to olanzapine in schizophrenia. Psychopharmacol Bull 37:109–112PubMedGoogle Scholar
  22. Ellingrod VL, Perry PJ, Ringold JC, Lund BC, Bever-Stille K, Fleming F, Holman TL, Miller D (2005) Weight gain associated with the -759 C/T polymorphism of the 5HT2C receptor and olanzapine. Am J Med Genet B Neuropsychiatr Genet 134B:76–78. doi:10.1002/ajmg.b.20169PubMedGoogle Scholar
  23. Ferno J, Raeder MB, Vik-Mo AO, Skrede S, Glambek M, Tronstad KJ, Breilid H, Lovlie R, Berge RK, Stansberg C, Steen VM (2005) Antipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: a novel mechanism of action? Pharmacogenomics J 5:298–304. doi:10.1038/sj.tpj.6500323PubMedGoogle Scholar
  24. Fijal BA, Kinon BJ, Kapur S, Stauffer VL, Conley RR, Jamal HH, Kane JM, Witte MM, Houston JP (2009) Candidate-gene association analysis of response to risperidone in African-American and white patients with schizophrenia. Pharmacogenomics J 9:311–318. doi:10.1038/tpj.2009.24PubMedGoogle Scholar
  25. Fijal BA, Stauffer VL, Kinon BJ, Conley RR, Hoffmann VP, Witte MM, Zhao F, Houston JP (2011) Analysis of gene variants previously associated with iloperidone response in patients with schizophrenia who are treated with risperidone. J Clin Psychiatry. doi:10.4088/JCP.10m06507Google Scholar
  26. Gebhardt S, Theisen FM, Haberhausen M, Heinzel-Gutenbrunner M, Wehmeier PM, Krieg JC, Kuhnau W, Schmidtke J, Remschmidt H, Hebebrand J (2010) Body weight gain induced by atypical antipsychotics: an extension of the monozygotic twin and sib pair study. J Clin Pharm Ther 35:207–211. doi:10.1111/j.1365-2710.2009.01084.xPubMedGoogle Scholar
  27. Goldberg TE, Kotov R, Lee AT, Gregersen PK, Lencz T, Bromet E, Malhotra AK (2009) The serotonin transporter gene and disease modification in psychosis: evidence for systematic differences in allelic directionality at the 5-HTTLPR locus. Schizophr Res 111:103–108. doi:10.1016/j.schres.2009.03.021PubMedGoogle Scholar
  28. Greenbaum L, Alkelai A, Rigbi A, Kohn Y, Lerer B (2010) Evidence for association of the GLI2 gene with tardive dyskinesia in patients with chronic schizophrenia. Mov Disord 25:2809–2817. doi:10.1002/mds.23377PubMedGoogle Scholar
  29. Greenbaum L, Alkelai A, Zozulinsky P, Kohn Y, Lerer B (2011) Support for association of HSPG2 with tardive dyskinesia in Caucasian populations. Pharmacogenomics J. doi:10.1038/tpj.2011.32; 10.1038/tpj.2011.32Google Scholar
  30. Gunes A, Dahl ML, Spina E, Scordo MG (2008) Further evidence for the association between 5-HT2C receptor gene polymorphisms and extrapyramidal side effects in male schizophrenic patients. Eur J Clin Pharmacol 64:477–482. doi:10.1007/s00228-007-0450-xPubMedGoogle Scholar
  31. Gunes A, Scordo MG, Jaanson P, Dahl ML (2007) Serotonin and dopamine receptor gene polymorphisms and the risk of extrapyramidal side effects in perphenazine-treated schizophrenic patients. Psychopharmacology (Berl) 190:479–484. doi:10.1007/s00213-006-0622-xGoogle Scholar
  32. Hamdani N, Bonniere M, Ades J, Hamon M, Boni C, Gorwood P (2005) Negative symptoms of schizophrenia could explain discrepant data on the association between the 5-HT2A receptor gene and response to antipsychotics. Neurosci Lett 377:69–74. doi:10.1016/j.neulet.2004.11.070PubMedGoogle Scholar
  33. Hill MJ, Reynolds GP (2011) Functional consequences of two HTR2C polymorphisms associated with antipsychotic-induced weight gain. Pharmacogenomics 12:727–734. doi:10.2217/pgs.11.16PubMedGoogle Scholar
  34. Hill MJ, Reynolds GP (2007) 5-HT2C receptor gene polymorphisms associated with antipsychotic drug action alter promoter activity. Brain Res 1149:14–17. doi:10.1016/j.brainres.2007.02.038PubMedGoogle Scholar
  35. Hong CJ, Lin CH, Yu YW, Chang SC, Wang SY, Tsai SJ (2002) Genetic variant of the histamine-1 receptor (glu349asp) and body weight change during clozapine treatment. Psychiatr Genet 12:169–171PubMedGoogle Scholar
  36. Hu XZ, Lipsky RH, Zhu G, Akhtar LA, Taubman J, Greenberg BD, Xu K, Arnold PD, Richter MA, Kennedy JL, Murphy DL, Goldman D (2006) Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. Am J Hum Genet 78:815–826. doi:10.1086/503850PubMedGoogle Scholar
  37. Hwang R, Zai C, Tiwari A, Muller DJ, Arranz MJ, Morris AG, McKenna PJ, Munro J, Potkin SG, Lieberman JA, Meltzer HY, Kennedy JL (2010) Effect of dopamine D3 receptor gene polymorphisms and clozapine treatment response: exploratory analysis of nine polymorphisms and meta-analysis of the Ser9Gly variant. Pharmacogenomics J 10:200–218. doi:10.1038/tpj.2009.65PubMedGoogle Scholar
  38. Ikeda M, Tomita Y, Mouri A, Koga M, Okochi T, Yoshimura R, Yamanouchi Y, Kinoshita Y, Hashimoto R, Williams HJ, Takeda M, Nakamura J, Nabeshima T, Owen MJ, O’Donovan MC, Honda H, Arinami T, Ozaki N, Iwata N (2010) Identification of novel candidate genes for treatment response to risperidone and susceptibility for schizophrenia: integrated analysis among pharmacogenomics, mouse expression, and genetic case-control association approaches. Biol Psychiatry 67:263–269. doi:10.1016/j.biopsych.2009.08.030PubMedGoogle Scholar
  39. Inada T, Koga M, Ishiguro H, Horiuchi Y, Syu A, Yoshio T, Takahashi N, Ozaki N, Arinami T (2008) Pathway-based association analysis of genome-wide screening data suggest that genes associated with the gamma-aminobutyric acid receptor signaling pathway are involved in neuroleptic-induced, treatment-resistant tardive dyskinesia. Pharmacogenet Genomics 18:317–323. doi:10.1097/FPC.0b013e3282f70492PubMedGoogle Scholar
  40. Kantrowitz JT, Javitt DC (2010) N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull 83:108–121. doi:10.1016/j.brainresbull.2010.04.006PubMedGoogle Scholar
  41. Kohlrausch FB, Salatino-Oliveira A, Gama CS, Lobato MI, Belmonte-de-Abreu P, Hutz MH (2008) G-protein gene 825 C > T polymorphism is associated with response to clozapine in Brazilian schizophrenics. Pharmacogenomics 9:1429–1436. doi:10.2217/14622416.9.10.1429PubMedGoogle Scholar
  42. Lane HY, Chang YC, Chiu CC, Chen ML, Hsieh MH, Chang WH (2002) Association of risperidone treatment response with a polymorphism in the 5-HT(2A) receptor gene. Am J Psychiatry 159:1593–1595PubMedGoogle Scholar
  43. Lane HY, Hsu SK, Liu YC, Chang YC, Huang CH, Chang WH (2005) Dopamine D3 receptor Ser9Gly polymorphism and risperidone response. J Clin Psychopharmacol 25:6–11PubMedGoogle Scholar
  44. Lane HY, Lee CC, Chang YC, Lu CT, Huang CH, Chang WH (2004) Effects of dopamine D2 receptor Ser311Cys polymorphism and clinical factors on risperidone efficacy for positive and negative symptoms and social function. Int J Neuropsychopharmacol 7:461–470. doi:10.1017/S1461145704004389PubMedGoogle Scholar
  45. Lavedan C, Licamele L, Volpi S, Hamilton J, Heaton C, Mack K, Lannan R, Thompson A, Wolfgang CD, Polymeropoulos MH (2009) Association of the NPAS3 gene and five other loci with response to the antipsychotic iloperidone identified in a whole genome association study. Mol Psychiatry 14:804–819. doi:10.1038/mp. 2008.56PubMedGoogle Scholar
  46. Le Hellard S, Theisen FM, Haberhausen M, Raeder MB, Ferno J, Gebhardt S, Hinney A, Remschmidt H, Krieg JC, Mehler-Wex C, Nothen MM, Hebebrand J, Steen VM (2009) Association between the insulin-induced gene 2 (INSIG2) and weight gain in a German sample of antipsychotic-treated schizophrenic patients: perturbation of SREBP-controlled lipogenesis in drug-related metabolic adverse effects? Mol Psychiatry 14:308–317. doi:10.1038/sj.mp. 4002133PubMedGoogle Scholar
  47. Lee HY, Kim DJ, Lee HJ, Choi JE, Kim YK (2009) No association of serotonin transporter polymorphism (5-HTTVNTR and 5-HTTLPR) with characteristics and treatment response to atypical antipsychotic agents in schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 33:276–280. doi:10.1016/j.pnpbp. 2008.11.013PubMedGoogle Scholar
  48. Lemonde S, Du L, Bakish D, Hrdina P, Albert PR (2004) Association of the C(-1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int J Neuropsychopharmacol 7:501–506. doi:10.1017/S1461145704004699PubMedGoogle Scholar
  49. Lemonde S, Turecki G, Bakish D, Du L, Hrdina PD, Bown CD, Sequeira A, Kushwaha N, Morris SJ, Basak A, Ou XM, Albert PR (2003) Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neurosci 23:8788–8799PubMedGoogle Scholar
  50. Lencz T, Robinson DG, Napolitano B, Sevy S, Kane JM, Goldman D, Malhotra AK (2010) DRD2 promoter region variation predicts antipsychotic-induced weight gain in first episode schizophrenia. Pharmacogenet Genomics 20:569–572. doi:10.1097/FPC.0b013e32833ca24bPubMedGoogle Scholar
  51. Lerer B, Segman RH, Tan EC, Basile VS, Cavallaro R, Aschauer HN, Strous R, Chong SA, Heresco-Levy U, Verga M, Scharfetter J, Meltzer HY, Kennedy JL, Macciardi F (2005) Combined analysis of 635 patients confirms an age-related association of the serotonin 2A receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype. Int J Neuropsychopharmacol 8:411–425. doi:10.1017/S1461145705005389PubMedGoogle Scholar
  52. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Müller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531PubMedGoogle Scholar
  53. Lett TA, Wallace TJ, Chowdhury NI, Tiwari AK, Kennedy JL, Müller DJ (2011) Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications. Mol Psychiatry. doi:10.1038/mp. 2011.109; 10.1038/mp.2011.109Google Scholar
  54. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RS, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK (2005) Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 353:1209–1223. doi:10.1056/NEJMoa051688PubMedGoogle Scholar
  55. Malhotra AK, Murphy GM Jr, Kennedy JL (2004) Pharmacogenetics of psychotropic drug response. Am J Psychiatry 161:780–796PubMedGoogle Scholar
  56. Mammes O, Betoulle D, Aubert R, Herbeth B, Siest G, Fumeron F (2000) Association of the G-2548A polymorphism in the 5′ region of the LEP gene with overweight. Ann Hum Genet 64:391–394PubMedGoogle Scholar
  57. Mata I, Madoz V, Arranz MJ, Sham P, Murray RM (2001) Olanzapine: concordant response in monozygotic twins with schizophrenia. Br J Psychiatry 178:86PubMedGoogle Scholar
  58. McClay JL, Adkins DE, Aberg K, Bukszar J, Khachane AN, Keefe RS, Perkins DO, McEvoy JP, Stroup TS, Vann RE, Beardsley PM, Lieberman JA, Sullivan PF, van den Oord EJ (2011a) Genome-wide pharmacogenomic study of neurocognition as an indicator of antipsychotic treatment response in schizophrenia. Neuropsychopharmacology 36:616–626. doi:10.1038/npp. 2010.193PubMedGoogle Scholar
  59. McClay JL, Adkins DE, Aberg K, Stroup S, Perkins DO, Vladimirov VI, Lieberman JA, Sullivan PF, van den Oord EJ (2011b) Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics. Mol Psychiatry 16:76–85. doi:10.1038/mp. 2009.89PubMedGoogle Scholar
  60. Meary A, Brousse G, Jamain S, Schmitt A, Szoke A, Schurhoff F, Gavaudan G, Lancon C, Macquin-Mavier I, Leboyer M, Llorca PM (2008) Pharmacogenetic study of atypical antipsychotic drug response: involvement of the norepinephrine transporter gene. Am J Med Genet B Neuropsychiatr Genet 147B:491–494. doi:10.1002/ajmg.b.30635PubMedGoogle Scholar
  61. Meltzer HY, Massey BW (2011) The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol 11:59–67. doi:10.1016/j.coph.2011.02.007PubMedGoogle Scholar
  62. Miller DD, Ellingrod VL, Holman TL, Buckley PF, Arndt S (2005) Clozapine-induced weight gain associated with the 5HT2C receptor −759 C/T polymorphism. Am J Med Genet B Neuropsychiatr Genet 133B:97–100. doi:10.1002/ajmg.b.30115PubMedGoogle Scholar
  63. Mossner R, Schuhmacher A, Kuhn KU, Cvetanovska G, Rujescu D, Zill P, Quednow BB, Rietschel M, Wolwer W, Gaebel W, Wagner M, Maier W (2009) Functional serotonin 1A receptor variant influences treatment response to atypical antipsychotics in schizophrenia. Pharmacogenet Genomics 19:91–94. doi:10.1097/FPC.0b013e328311a917PubMedGoogle Scholar
  64. Mossner R, Schuhmacher A, Wagner M, Lennertz L, Steinbrecher A, Quednow BB, Rujescu D, Rietschel M, Maier W (2011) The schizophrenia risk gene ZNF804A influences the antipsychotic response of positive schizophrenia symptoms. Eur Arch Psychiatry Clin Neurosci. doi:10.1007/s00406-011-0235-1Google Scholar
  65. Müller DJ, De Luca V, Sicard T, King N, Hwang R, Volavka J, Czobor P, Sheitman BB, Lindenmayer JP, Citrome L, McEvoy JP, Lieberman JA, Meltzer HY, Kennedy JL (2005) Suggestive association between the C825T polymorphism of the G-protein beta3 subunit gene (GNB3) and clinical improvement with antipsychotics in schizophrenia. Eur Neuropsychopharmacol 15:525–531. doi:10.1016/j.euroneuro.2005.02.001PubMedGoogle Scholar
  66. Need AC, Keefe RS, Ge D, Grossman I, Dickson S, McEvoy JP, Goldstein DB (2009) Pharmacogenetics of antipsychotic response in the CATIE trial: a candidate gene analysis. Eur J Hum Genet 17:946–957. doi:10.1038/ejhg.2008.264PubMedGoogle Scholar
  67. Neill JC, Barnes S, Cook S, Grayson B, Idris NF, McLean SL, Snigdha S, Rajagopal L, Harte MK (2010) Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol Ther 128:419–432. doi:10.1016/j.pharmthera.2010.07.004PubMedGoogle Scholar
  68. Opgen-Rhein C, Dettling M (2008) Clozapine-induced agranulocytosis and its genetic determinants. Pharmacogenomics 9:1101–1111. doi:10.2217/14622416.9.8.1101PubMedGoogle Scholar
  69. Park YM, Chung YC, Lee SH, Lee KJ, Kim H, Byun YC, Lim SW, Paik JW, Lee HJ (2006) Weight gain associated with the alpha2a-adrenergic receptor -1,291 C/G polymorphism and olanzapine treatment. Am J Med Genet B Neuropsychiatr Genet 141B:394–397. doi:10.1002/ajmg.b.30311PubMedGoogle Scholar
  70. Parsons MJ, D'Souza UM, Arranz MJ, Kerwin RW, Makoff AJ (2004) The -1438A/G polymorphism in the 5-hydroxytryptamine type 2A receptor gene affects promoter activity. Biol Psychiatry 56:406–410. doi:10.1016/j.biopsych.2004.06.020PubMedGoogle Scholar
  71. Perez-Iglesias R, Mata I, Amado JA, Berja A, Garcia-Unzueta MT, Martinez Garcia O, Arranz MJ, Vazquez-Barquero JL, Crespo-Facorro B (2010) Effect of FTO, SH2B1, LEP, and LEPR polymorphisms on weight gain associated with antipsychotic treatment. J Clin Psychopharmacol 30:661–666PubMedGoogle Scholar
  72. Reynolds GP (2007) The impact of pharmacogenetics on the development and use of antipsychotic drugs. Drug Discov Today 12:953–959. doi:10.1016/j.drudis.2007.07.018PubMedGoogle Scholar
  73. Reynolds GP (2004) Receptor mechanisms in the treatment of schizophrenia. J Psychopharmacol 18:340–345. doi: 10.1177/026988110401800303 PubMedGoogle Scholar
  74. Reynolds GP, Arranz B, Templeman LA, Fertuzinhos S, San L (2006a) Effect of 5-HT1A receptor gene polymorphism on negative and depressive symptom response to antipsychotic treatment of drug-naive psychotic patients. Am J Psychiatry 163:1826–1829. doi:10.1176/appi.ajp. 163.10.1826PubMedGoogle Scholar
  75. Reynolds GP, Kirk SL (2010) Metabolic side effects of antipsychotic drug treatment–pharmacological mechanisms. Pharmacol Ther 125:169–179. doi:10.1016/j.pharmthera.2009.10.010PubMedGoogle Scholar
  76. Reynolds GP, Templeman LA, Godlewska BR (2006b) Pharmacogenetics of schizophrenia. Expert Opin Pharmacother 7:1429–1440. doi:10.1517/14656566.7.11.1429PubMedGoogle Scholar
  77. Reynolds GP, Yao Z, Zhang X, Sun J, Zhang Z (2005) Pharmacogenetics of treatment in first-episode schizophrenia: D3 and 5-HT2C receptor polymorphisms separately associate with positive and negative symptom response. Eur Neuropsychopharmacol 15:143–151. doi:10.1016/j.euroneuro.2004.07.001PubMedGoogle Scholar
  78. Reynolds GP, Zhang Z, Zhang X (2003) Polymorphism of the promoter region of the serotonin 5-HT(2 C) receptor gene and clozapine-induced weight gain. Am J Psychiatry 160:677–679PubMedGoogle Scholar
  79. Reynolds GP, Zhang ZJ, Zhang XB (2002) Association of antipsychotic drug-induced weight gain with a 5-HT2C receptor gene polymorphism. Lancet 359:2086–2087. doi:10.1016/S0140-6736(02)08913-4PubMedGoogle Scholar
  80. Risselada AJ, Vehof J, Bruggeman R, Wilffert B, Cohen D, Al Hadithy AF, Arends J, Mulder H (2010a) Association between HTR2C gene polymorphisms and the metabolic syndrome in patients using antipsychotics: a replication study. Pharmacogenomics J. doi:10.1038/tpj.2010.66Google Scholar
  81. Risselada AJ, Vehof J, Bruggeman R, Wilffert B, Cohen D, Al Hadithy AF, Arends J, Mulder H (2010b) Association between the 1291-C/G polymorphism in the adrenergic alpha-2a receptor and the metabolic syndrome. J Clin Psychopharmacol 30:667–671PubMedGoogle Scholar
  82. Saiz PA, Susce MT, Clark DA, Kerwin RW, Molero P, Arranz MJ, de Leon J (2008) An investigation of the alpha1A-adrenergic receptor gene and antipsychotic-induced side-effects. Hum Psychopharmacol 23:107–114. doi:10.1002/hup. 903PubMedGoogle Scholar
  83. Schuhmacher A, Mossner R, Quednow BB, Kuhn KU, Wagner M, Cvetanovska G, Rujescu D, Zill P, Möller HJ, Rietschel M, Franke P, Wolwer W, Gaebel W, Maier W (2009) Influence of 5-HT3 receptor subunit genes HTR3A, HTR3B, HTR3C, HTR3D and HTR3E on treatment response to antipsychotics in schizophrenia. Pharmacogenet Genomics 19:843–851. doi:10.1097/FPC.0b013e3283313296PubMedGoogle Scholar
  84. Segman RH, Heresco-Levy U, Finkel B, Inbar R, Neeman T, Schlafman M, Dorevitch A, Yakir A, Lerner A, Goltser T, Shelevoy A, Lerer B (2000) Association between the serotonin 2 C receptor gene and tardive dyskinesia in chronic schizophrenia: additive contribution of 5-HT2Cser and DRD3gly alleles to susceptibility. Psychopharmacology (Berl) 152:408–413Google Scholar
  85. Serretti A, Drago A, De Ronchi D (2007) HTR2A gene variants and psychiatric disorders: a review of current literature and selection of SNPs for future studies. Curr Med Chem 14:2053–2069PubMedGoogle Scholar
  86. Silver H (2004) Selective serotonin re-uptake inhibitor augmentation in the treatment of negative symptoms of schizophrenia. Expert Opin Pharmacother 5:2053–2058. doi:10.1517/14656566.5.10.2053PubMedGoogle Scholar
  87. Smith RC, Segman RH, Golcer-Dubner T, Pavlov V, Lerer B (2008) Allelic variation in ApoC3, ApoA5 and LPL genes and first and second generation antipsychotic effects on serum lipids in patients with schizophrenia. Pharmacogenomics J 8:228–236. doi:10.1038/sj.tpj.6500474PubMedGoogle Scholar
  88. Spellmann I, Rujescu D, Musil R, Mayr A, Giegling I, Genius J, Zill P, Dehning S, Opgen-Rhein M, Cerovecki A, Hartmann AM, Schäfer M, Bondy B, Müller N, Möller HJ, Riedel M (2011) Homer-1 polymorphisms are associated with psychopathology and response to treatment in schizophrenic patients. J Psychiatr Res 45:234–241. doi:10.1016/j.jpsychires.2010.06.004PubMedGoogle Scholar
  89. Staddon S, Arranz MJ, Mancama D, Mata I, Kerwin RW (2002) Clinical applications of pharmacogenetics in psychiatry. Psychopharmacology (Berl) 162:18–23. doi:10.1007/s00213-002-1084-4Google Scholar
  90. Suzuki A, Mihara K, Kondo T, Tanaka O, Nagashima U, Otani K, Kaneko S (2000) The relationship between dopamine D2 receptor polymorphism at the Taq1 A locus and therapeutic response to nemonapride, a selective dopamine antagonist, in schizophrenic patients. Pharmacogenetics 10:335–341PubMedGoogle Scholar
  91. Syu A, Ishiguro H, Inada T, Horiuchi Y, Tanaka S, Ishikawa M, Arai M, Itokawa M, Niizato K, Iritani S, Ozaki N, Takahashi M, Kakita A, Takahashi H, Nawa H, Keino-Masu K, Arikawa-Hirasawa E, Arinami T (2010) Association of the HSPG2 gene with neuroleptic-induced tardive dyskinesia. Neuropsychopharmacology 35:1155–1164. doi:10.1038/npp. 2009.220PubMedGoogle Scholar
  92. Tamminga CA (2006) The neurobiology of cognition in schizophrenia. J Clin Psychiatry 67(Suppl 9):9–13, discussion 36 − 42PubMedGoogle Scholar
  93. Tanaka S, Syu A, Ishiguro H, Inada T, Horiuchi Y, Ishikawa M, Koga M, Noguchi E, Ozaki N, Someya T, Kakita A, Takahashi H, Nawa H, Arinami T (2011) DPP6 as a candidate gene for neuroleptic-induced tardive dyskinesia. Pharmacogenomics J. doi:10.1038/tpj.2011.36; 10.1038/tpj.2011.36Google Scholar
  94. Templeman LA, Reynolds GP, Arranz B, San L (2005) Polymorphisms of the 5-HT2C receptor and leptin genes are associated with antipsychotic drug-induced weight gain in Caucasian subjects with a first-episode psychosis. Pharmacogenet Genomics 15:195–200PubMedGoogle Scholar
  95. Thelma B, Srivastava V, Tiwari AK (2008) Genetic underpinnings of tardive dyskinesia: passing the baton to pharmacogenetics. Pharmacogenomics 9:1285–1306. doi:10.2217/14622416.9.9.1285PubMedGoogle Scholar
  96. Tiwari AK, Zai CC, Meltzer HY, Lieberman JA, Muller DJ, Kennedy JL (2010) Association study of polymorphisms in insulin induced gene 2 (INSIG2) with antipsychotic-induced weight gain in European and African-American schizophrenia patients. Hum Psychopharmacol 25:253–259. doi:10.1002/hup. 1111PubMedGoogle Scholar
  97. Tollefson GD, Andersen SW, Tran PV (1999) The course of depressive symptoms in predicting relapse in schizophrenia: a double-blind, randomized comparison of olanzapine and risperidone. Biol Psychiatry 46:365–373PubMedGoogle Scholar
  98. Ujike H, Nomura A, Morita Y, Morio A, Okahisa Y, Kotaka T, Kodama M, Ishihara T, Kuroda S (2008) Multiple genetic factors in olanzapine-induced weight gain in schizophrenia patients: a cohort study. J Clin Psychiatry 69:1416–1422PubMedGoogle Scholar
  99. Vazquez-Bourgon J, Arranz MJ, Mata I, Pelayo-Teran JM, Perez-Iglesias R, Medina-Gonzalez L, Carrasco-Marin E, Vazquez-Barquero JL, Crespo-Facorro B (2010) Serotonin transporter polymorphisms and early response to antipsychotic treatment in first episode of psychosis. Psychiatry Res 175:189–194. doi:10.1016/j.psychres.2008.12.011PubMedGoogle Scholar
  100. Vehof J, Risselada AJ, Al Hadithy AF, Burger H, Snieder H, Wilffert B, Arends J, Wunderink L, Knegtering H, Wiersma D, Cohen D, Mulder H, Bruggeman R (2011) Association of genetic variants of the histamine H1 and muscarinic M3 receptors with BMI and HbA1c values in patients on antipsychotic medication. Psychopharmacology (Berl). doi:10.1007/s00213-011-2211-xGoogle Scholar
  101. Vojvoda D, Grimmell K, Sernyak M, Mazure CM (1996) Monozygotic twins concordant for response to clozapine. Lancet 347:61PubMedGoogle Scholar
  102. Volpi S, Heaton C, Mack K, Hamilton JB, Lannan R, Wolfgang CD, Licamele L, Polymeropoulos MH, Lavedan C (2009a) Whole genome association study identifies polymorphisms associated with QT prolongation during iloperidone treatment of schizophrenia. Mol Psychiatry 14:1024–1031. doi:10.1038/mp. 2008.52PubMedGoogle Scholar
  103. Volpi S, Potkin SG, Malhotra AK, Licamele L, Lavedan C (2009b) Applicability of a genetic signature for enhanced iloperidone efficacy in the treatment of schizophrenia. J Clin Psychiatry 70:801–809PubMedGoogle Scholar
  104. Wang L, Fang C, Zhang A, Du J, Yu L, Ma J, Feng G, Xing Q, He L (2008) The –1019 C/G polymorphism of the 5-HT(1)A receptor gene is associated with negative symptom response to risperidone treatment in schizophrenia patients. J Psychopharmacol 22:904–909. doi:10.1177/0269881107081522PubMedGoogle Scholar
  105. Wang L, Yu L, He G, Zhang J, Zhang AP, Du J, Tang RQ, Zhao XZ, Ma J, Xuan JK, Xiao Y, Gu NF, Feng GY, Xu MQ, Xing QH, He L (2007) Response of risperidone treatment may be associated with polymorphisms of SLC6A4 gene in Chinese schizophrenia patients. Neurosci Lett 414:1–4. doi:10.1016/j.neulet.2006.09.014PubMedGoogle Scholar
  106. Wang YC, Bai YM, Chen JY, Lin CC, Lai IC, Liou YJ (2005) C825T polymorphism in the human G protein beta3 subunit gene is associated with long-term clozapine treatment-induced body weight change in the Chinese population. Pharmacogenet Genomics 15:743–748PubMedGoogle Scholar
  107. Webb BT, Sullivan PF, Skelly T, van den Oord EJ (2008) Model-based gene selection shows engrailed 1 is associated with antipsychotic response. Pharmacogenet Genomics 18:751–759. doi:10.1097/FPC.0b013e32830162bcPubMedGoogle Scholar
  108. Weickert TW, Goldberg TE, Mishara A, Apud JA, Kolachana BS, Egan MF, Weinberger DR (2004) Catechol-O-methyltransferase val108/158met genotype predicts working memory response to antipsychotic medications. Biol Psychiatry 56:677–682. doi:10.1016/j.biopsych.2004.08.012PubMedGoogle Scholar
  109. Xu MQ, St Clair D, Feng GY, Lin ZG, He G, Li X, He L (2008) BDNF gene is a genetic risk factor for schizophrenia and is related to the chlorpromazine-induced extrapyramidal syndrome in the Chinese population. Pharmacogenet Genomics 18:449–457. doi:10.1097/FPC.0b013e3282f85e26PubMedGoogle Scholar
  110. Xuan J, Zhao X, He G, Yu L, Wang L, Tang W, Li X, Gu N, Feng G, Xing Q, He L (2008) Effects of the dopamine D3 receptor (DRD3) gene polymorphisms on risperidone response: a pharmacogenetic study. Neuropsychopharmacology 33:305–311. doi:10.1038/sj.npp. 1301418PubMedGoogle Scholar
  111. Yevtushenko OO, Cooper SJ, O'Neill R, Doherty JK, Woodside JV, Reynolds GP (2008) Influence of 5-HT2C receptor and leptin gene polymorphisms, smoking and drug treatment on metabolic disturbances in patients with schizophrenia. Br J Psychiatry 192:424–428. doi:10.1192/bjp.bp. 107.041723PubMedGoogle Scholar
  112. Young RM, Lawford BR, Barnes M, Burton SC, Ritchie T, Ward WK, Noble EP (2004) Prolactin levels in antipsychotic treatment of patients with schizophrenia carrying the DRD2*A1 allele. Br J Psychiatry 185:147–151. doi:10.1192/bjp. 185.2.147PubMedGoogle Scholar
  113. Youssef H, Lyster G, Youssef F (1989) Familial psychosis and vulnerability to tardive dyskinesia. Int Clin Psychopharmacol 4:323–328PubMedGoogle Scholar
  114. Zai CC, Tiwari AK, Basile V, de Luca V, Müller DJ, Voineskos AN, Remington G, Meltzer HY, Lieberman JA, Potkin SG, Kennedy JL (2010) Oxidative stress in tardive dyskinesia: genetic association study and meta-analysis of NADPH quinine oxidoreductase 1 (NQO1) and Superoxide dismutase 2 (SOD2, MnSOD) genes. Prog Neuropsychopharmacol Biol Psychiatry 34:50–56. doi:10.1016/j.pnpbp. 2009.09.020PubMedGoogle Scholar
  115. Zhang A, Xing Q, Wang L, Du J, Yu L, Lin Z, Li X, Feng G, He L (2007) Dopamine transporter polymorphisms and risperidone response in Chinese schizophrenia patients: an association study. Pharmacogenomics 8:1337–1345. doi:10.2217/14622416.8.10.1337PubMedGoogle Scholar
  116. Zhang JP, Lencz T, Malhotra AK (2010) D2 receptor genetic variation and clinical response to antipsychotic drug treatment: a meta-analysis. Am J Psychiatry 167:763–772. doi:10.1176/appi.ajp. 2009.09040598PubMedGoogle Scholar
  117. Zhang JP, Malhotra AK (2011) Pharmacogenetics and antipsychotics: therapeutic efficacy and side effects prediction. Expert Opin Drug Metab Toxicol 7:9–37. doi:10.1517/17425255.2011.532787PubMedGoogle Scholar
  118. Zhang XR, Zhang ZJ, Zhu RX, Yuan YG, Jenkins TA, Reynolds GP (2011) Sexual dysfunction in male schizophrenia: influence of antipsychotic drugs, prolactin and polymorphisms of the dopamine D2 receptor genes. Pharmacogenomics. doi:10.2217/pgs.11.46Google Scholar
  119. Zhang XY, Zhou DF, Wu GY, Cao LY, Tan YL, Haile CN, Li J, Lu L, Kosten TA, Kosten TR (2008) BDNF levels and genotype are associated with antipsychotic-induced weight gain in patients with chronic schizophrenia. Neuropsychopharmacology 33:2200–2205. doi:10.1038/sj.npp. 1301619PubMedGoogle Scholar
  120. Zhang ZJ, Yao ZJ, Zhang XB, Chen JF, Sun J, Yao H, Hou G, Zhang XB (2003a) No association of antipsychotic agent-induced weight gain with a DA receptor gene polymorphism and therapeutic response. Acta Pharmacol Sin 24:235–240PubMedGoogle Scholar
  121. Zhang ZJ, Zhang XB, Hou G, Yao H, Reynolds GP (2003b) Interaction between polymorphisms of the dopamine D3 receptor and manganese superoxide dismutase genes in susceptibility to tardive dyskinesia. Psychiatr Genet 13:187–192. doi:10.1097/01.ypg.0000071600.59979.0ePubMedGoogle Scholar
  122. Zhang ZJ, Zhang XB, Sha WW, Zhang XB, Reynolds GP (2002) Association of a polymorphism in the promoter region of the serotonin 5-HT2C receptor gene with tardive dyskinesia in patients with schizophrenia. Mol Psychiatry 7:670–671. doi:10.1038/sj.mp. 4001052PubMedGoogle Scholar
  123. Zuo L, Luo X, Krystal JH, Cramer J, Charney DS, Gelernter J (2009) The efficacies of clozapine and haloperidol in refractory schizophrenia are related to DTNBP1 variation. Pharmacogenet Genomics 19:437–446. doi:10.1097/FPC.0b013e32832b9cfcPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Biomedical Research CentreSheffield Hallam UniversitySheffieldUK

Personalised recommendations