Biomarkers for Antipsychotic Therapies

  • Emilio Merlo PichEmail author
  • Gabriel Vargas
  • Enrico Domenici
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 212)


Molecular biomarkers for antipsychotic treatments have been conceptually linked to the measurements of dopamine functions, mostly D2 receptor occupancy, either by imaging using selective PET/SPECT radioactive tracers or by assessing plasma prolactin levels. A quest for novel biomarkers was recently proposed by various academic, health service, and industrial institutions driven by the need for better treatments of psychoses. In this review we conceptualize biomarkers within the Translational Medicine paradigm whose goal was to provide support to critical decision-making in drug discovery. At first we focused on biomarkers as outcome measure of clinical studies by searching into the database The results were somewhat disappointing, showing that out of 1,659 antipsychotic trials only 18 used a biomarker as an outcome measure. Several of these trials targeted plasma lipids as sentinel marker for metabolic adverse effects associated with the use of atypical antipsychotics, while only few studies were aimed to new disease specific biological markers. As an example of a mechanistic biomarker, we described the work done to progress the novel class of glycine transporter inhibitors as putative treatment for negative symptoms of schizophrenia. We also review how large-scale multiplex biological assays were applied to samples from tissues of psychiatric patients, so to learn from changes of numerous analytes (metabolic products, lipids, proteins, RNA transcripts) about the substrates involved in the disease. We concluded that a stringent implementation of these techniques could contribute to the endophenotypic characterization of patients, helping in the identification of key biomarkers to drive personalized medicine and new treatment development.


Biomarkers Fluids Schizophrenia Psychoses Endophenotypes Drug discovery Neuroleptics Metabolomics Proteomics Transcriptomics Glycine transporter Dopamine Translational medicine Personalized medicine 


  1. Alberati D, Borroni E, Moreau J, Hainzl D, Pinard E, Wettstein JG (2011) Partial occupancy of the glycine transporter type 1 in rat by RG1678 leads to efficacy in models relevant to schizophrenia. Schizophr Bull 37(Suppl 1):286Google Scholar
  2. Albrethsen J (2011) The first decade of MALDI protein profiling: A lesson in translational biomarker research. J Proteomics 74:765–73PubMedCrossRefGoogle Scholar
  3. Allen AJ, Griss ME, Folley BS, Hawkins KA, Pearlson GD (2009) Endophenotypes in schizophrenia: A selective review. Schizophr Res 109:24–37PubMedCrossRefGoogle Scholar
  4. Barondes SH (1999) Molecules and mental illness. WH Freeman, BasingstokeGoogle Scholar
  5. Bertenshaw GP, Yip P, Seshaiah P, Zhao J, Chen TH, Wiggins WS, Mapes JP, Mansfield BC (2008) Multianalyte profiling of serum antigens and autoimmune and infectious disease molecules to identify biomarkers dysregulated in epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 17:2872–81PubMedCrossRefGoogle Scholar
  6. Beuger M, van Kammen DP, Kelley ME, Yao J (1996) Dopamine turnover in schizophrenia before and after haloperidol withdrawal CSF, plasma, and urine Studies. Neuropsychopharmacology 15:75–86PubMedCrossRefGoogle Scholar
  7. Bieck PR, Potter WZ (2005) Biomarkers in psychotropic drug development. Integration of data across multiple domains. Annu Rev Pharmacol Toxicol 45:227–46PubMedCrossRefGoogle Scholar
  8. Borroni E, Wong DF, Wallace TL, Zhou Y, Kumar A, Pinard E, Alberati D (2011) Partial occupancy of the glycine transporter type 1 in monkey by RG1678 leads to efficacy in a model of prefrontal cortical function. Schizophr Bull 37(Suppl 1):296Google Scholar
  9. Caffo NA (2008) Curidium Medica, plc. Company profile. Personalized Med 5:219–2CrossRefGoogle Scholar
  10. Catafau AN, Penengo MM, Nucci G, Bullich S, Corripio I, Parellada E, García-Ribera C, Gomeni R, Merlo-Pich E, Barcelona Clinical Imaging in Psychiatry Group (2008) Pharmacokinetics and time course of D(2) receptor occupancy induced by atypical antipsychotics in stabilized schizophrenic patients. J Psychopharmacol 8:882–94CrossRefGoogle Scholar
  11. Catafau AM, Bullich S, Nucci G, Burgess C, Gray F, Merlo-Pich E, Barcelona Clinical Imaging in Psychiatry Group (2011) Contribution of SPECT measurements of D2 and 5HT2A occupancy to the clinical development of the antipsychotic SB-773812. J Nucl Med 52:526–34PubMedCrossRefGoogle Scholar
  12. Chertkow Y, Weinreb O, Youdim MB, Silver H (2007) Gene expression changes in peripheral mononuclear cells from schizophrenic patients treated with a combination of antipsychotic with fluvoxamine. Prog Neuropsychopharmacol Biol Psychiatry 31:1356–62PubMedCrossRefGoogle Scholar
  13. Chin L, Andersen JK, Futreal PA (2011) Cancer genomics: from discovery science to personalized medicine. Nat Med 17:297–303PubMedCrossRefGoogle Scholar
  14. Coyle JT, Tsai G (2004) The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology (Berl) 174:32–8CrossRefGoogle Scholar
  15. Coyle JT, Basu A, Benneyworth M, Balu D, Konopaske G (2012) Glutamatergic synaptic dysregulation in schizophrenia: therapeutic implications. In: Geyer MA, Gross G (eds) Novel Antischizophrenia Treatments; Handbook of Experimental Pharmacology, vol. 213, Springer, HeidelbergGoogle Scholar
  16. Czermak C, Lehofer M, Wagner EM, Prietl B, Gorkiewicz G, Lemonis L, Rohrhofer A, Legl T, Schauenstein K, Liebmann PM (2004a) Reduced dopamine D3 receptor expression in blood lymphocytes of smokers is negatively correlated with daily number of smoked cigarettes: a peripheral correlate of dopaminergic alterations in smokers. Nicotine Tob Res 6:49–54PubMedCrossRefGoogle Scholar
  17. Czermak C, Lehofer M, Renger H, Wagner EM, Lemonis L, Rohrhofer A, Schauenstein K, Liebmann PM (2004b) Dopamine receptor D3 mRNA expression in human lymphocytes is negatively correlated with the personality trait of persistence. J Neuroimmunol 150:145–49PubMedCrossRefGoogle Scholar
  18. Davila R, Zumarraga M, Basterreche N, Arrue A, Anguiano JB (2007) Plasma homovanillic acid levels in schizophrenic patients: correlation with negative symptoms. Psychiatry Res 151:163–68PubMedCrossRefGoogle Scholar
  19. de Visser SJ, van der Post J, Pieters MS, Cohen AF, van Gerven JM (2001) Biomarkers for the effects of antipsychotic drugs in healthy volunteers. Br J Clin Pharmacol 51:119–32PubMedGoogle Scholar
  20. Domenici E, Muglia P (2007) The search for peripheral markers in psychiatry by genomic and proteomic approaches. Exp Opin Med Diagn 1:235–51CrossRefGoogle Scholar
  21. Domenici E, Willé DR, Tozzi F, Prokopenko I, Miller S, McKeown A, Brittain C, Rujescu D, Giegling I, Turck CW, Holsboer F, Bullmore ET, Middleton L, Merlo-Pich E, Alexander RC, Muglia P (2010) Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case-control collections. PLoS One 5:e9166PubMedCrossRefGoogle Scholar
  22. Duan H, Fleming J, Pritchard DK, Amon LM, Xue J, Arnett HA, Chen G, Breen P, Buckner JH, Molitor JA, Elkon KB, Schwartz SM (2008) Combined analysis of monocyte and lymphocyte messenger RNA expression with serum protein profiles in patients with scleroderma. Arthritis Rheum 58:1465–74PubMedCrossRefGoogle Scholar
  23. Editorial (2011) Getting personal. Nature 473:25–34Google Scholar
  24. Ersche KD, Roiser JP, Lucas M, Domenici E, Robbins TW, Bullmore ET (2011) Peripheral biomarkers of cognitive response to dopamine receptor agonist treatment. Psychopharmacology (Berl) 214:779–89CrossRefGoogle Scholar
  25. Frisoni GB, Prestia A, Geroldi C, Adorni A, Ghidoni R, Amicucci G, Bonetti M, Soricelli A, Rasser PE, Thompson PM, Giannakopoulos P (2011) Alzheimer’s CSF markers in older schizophrenia patients. Int J Geriatr Psychiatry 26:640–8PubMedCrossRefGoogle Scholar
  26. Fung ET (2010) A recipe for proteomics diagnostic test development: the OVA1 test, from biomarker discovery to FDA clearance. Clin Chem 56:327–9PubMedCrossRefGoogle Scholar
  27. German JB, Hammock BD, Watkins SM (2005) Metabolomics: building on a century of biochemistry to guide human health. Metabolomics 1:3–9PubMedCrossRefGoogle Scholar
  28. Gerretsen P, Müller DJ, Tiwari A, Mamo D, Pollock BG (2009) The intersection of pharmacology, imaging, and genetics in the development of personalized medicine. Dialogues Clin Neurosci 11:363–76PubMedGoogle Scholar
  29. Gladkevich A, Kauffman HF, Korf J (2004) Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 28:559–76PubMedCrossRefGoogle Scholar
  30. Glick ID, Correll CU, Altamura AC, Marder SR, Csernansky JG, Weiden PJ, Leucht S, Davis JM (2011) Mid-term and long-term efficacy and effectiveness of antipsychotic medications for schizophrenia: a data-driven, personalized clinical approach. J Clin Psychiatry 72:1616–27PubMedCrossRefGoogle Scholar
  31. Goodazi A, Vousooghi N, Sedaghati M, Mokri A, Zarrindast MR (2009) Dopamine receptors in human peripheral blood lymphocytes: changes in mRNA expression in opioid addiction. Eur J Pharmacol 615:218–22CrossRefGoogle Scholar
  32. Greenwood TA, Lazzeroni LC, Murray SS, Cadenhead KS, Calkins ME, Dobie DJ, Green MF, Gur RE, Gur RC, Hardiman G, Kelsoe JR, Leonard S, Light GA, Nuechterlein KH, Olincy A, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Freedman R, Braff DL (2011) Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the consortium on the genetics of schizophrenia. Am J Psychiatry 168(9):930–46PubMedCrossRefGoogle Scholar
  33. Harvey PD (2006) Current Status of the MATRICS/TURNS Initiative. Psychiatry (Edgmont) 3:24–33Google Scholar
  34. Hofmann C, Alberati D, Banken L, Boetsch C, Ereshefsky L, Jhee S, Moran S, Martin-Facklam M, Backholer Z, Boutouyrie-Dumont B (2011) Glycine transporter type 1 (GlyT1) inhibitor RG1678: proof of mechanism of action in healthy volunteers. Schizopr Bull 37(Suppl 1):306Google Scholar
  35. Huang JT, Leweke FM, Oxley D, Wang L, Harris N, Koethe D, Gerth CW, Nolden BM, Gross S, Schreiber D, Reed B, Bahn S (2006) Disease biomarkers in cerebrospinal fluid of patients with first-onset psychosis. PLoS Med 3:428–3CrossRefGoogle Scholar
  36. Huijbers A, Velstra B, Dekker TJ, Mesker WE, van der Burgt YE, Mertens BJ, Deelder AM, Tollenaar RA (2010) Proteomic serum biomarkers and their potential application in cancer screening programs. Int J Mol Sci 11:4175–93PubMedCrossRefGoogle Scholar
  37. Kaddurah-Daouk R, McEvoy J, Baillie RA, Lee D, Yao JK, Doraiswamy PM, Krishnan KR (2007) Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatry 12:934–45PubMedCrossRefGoogle Scholar
  38. Kalos M (2010) An integrative paradigm to impart quality to correlative science. J Transl Med 8:26PubMedCrossRefGoogle Scholar
  39. Kapur S, Zipursky R, Jones C, Remington G, Houle S (2000) Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first episode schizophrenia. Am J Psychiatry 157:514–20PubMedCrossRefGoogle Scholar
  40. Kurian SM, Le-Niculescu H, Patel SD, Bertram D, Davis J, Dike C, Yehyawi N, Lysaker P, Dustin J, Caligiuri M, Lohr J, Lahiri DK, Nurnberger JI Jr, Faraone SV, Geyer MA, Tsuang MT, Schork NJ, Salomon DR, Niculescu AB (2011) Identification of blood biomarkers for psychosis using convergent functional genomics. Mol Psychiatry 16:37–58PubMedCrossRefGoogle Scholar
  41. Kuzman MR, Medved V, Terzic J, Krainc D (2009) Genome-wide expression analysis of peripheral blood identifies candidate biomarkers for schizophrenia. J Psychiatric Res 43:1073–77CrossRefGoogle Scholar
  42. Kwak YT, Koo MS, Choi CH, Sunwoo I (2001) Change of dopamine receptor mRNA expression in lymphocyte of schizophrenic patients. BMC Med Genet 2:3PubMedCrossRefGoogle Scholar
  43. Ilani T, Ben Shachar D, Strous RD, Mazor M, Sheinkman A, Kotler M, Fuchs S (2001) A peripheral marker for schizophrenia: Increased levels of D3 dopamine receptor mRNA in blood lymphocytes. Proc Natl Acad Sci U S A 98:625–628PubMedCrossRefGoogle Scholar
  44. Javitt DC (2010) Glutamatergic theories of schizophrenia. Isr J Psychiatry Relat Sci 47:4–16PubMedGoogle Scholar
  45. Javitt DC (2012) Glycine transport inhibitors in the treatment of schizophrenia. In: Geyer MA, Gross G (eds) Novel Antischizophrenia Treatments; Handbook of Experimental Pharmacology, vol. 213, Springer, HeidelbergGoogle Scholar
  46. Lauder Lindsay W (1855) The histology of the blood in the insane. J Physiol Med Mental Pathol 1:78–93Google Scholar
  47. Le-Niculescu H, Kurian SM, Yehyawi N, Dike C, Patel SD, Edenberg HJ, Tsuang MT, Salomon DR, Nurnberger JI Jr, Niculescu AB (2009) Identifying blood biomarkers for mood disorders using convergent functional genomics. Mol Psychiatry 14:156–74PubMedCrossRefGoogle Scholar
  48. Leweke FM, Kranaster L, Pahlisch F, Klosterkötter J, Hellmich M, Piomelli D, Koethe D (2011) The efficacy of cannabidiol in the treatment of schizophrenia – a translational approach. Schizophr Bull 37(Suppl 1):313Google Scholar
  49. MacPhail SR (1892) Blood of the insane. In: Tuke DH (ed) A dictionary of psychological medicine (volume I). P. Blakiston and Son, PhiladelphiaGoogle Scholar
  50. Marder SR, Davis JM, Chouinard G (1997) The effects of risperidone on the five dimensions of schizophrenia derived by factor analysis: combined results of the North American trials. J Clin Psychiatry 58:538–46PubMedCrossRefGoogle Scholar
  51. Marincola FM (2003) Translational medicine: a two-way road. J Transl Med 1:1–3PubMedCrossRefGoogle Scholar
  52. Mikkelsen JD, Thomsen MS, Hansen HH, Lichota J (2010) Use of biomarkers in the discovery of novel anti-schizophrenia drugs. Drug Discov Today 15:137–41PubMedCrossRefGoogle Scholar
  53. Newcomer JW (2005) Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review. CNS Drugs 19(Suppl 1):1–93PubMedGoogle Scholar
  54. Noll R (2006) The blood of the insane. Hist Psychiatry 17:395–418PubMedCrossRefGoogle Scholar
  55. Nord M, Farde L (2011) Antipsychotic occupancy of dopamine receptors in schizophrenia. CNS Neurosci Ther 17(2):97–103PubMedCrossRefGoogle Scholar
  56. Nong Y, Huang YQ, Ju W, Kalia LV, Ahmadian G, Wang YT, Salter MW (2003) Glycine binding primes NMDA receptor internalization. Nature 422(6929):302–7PubMedCrossRefGoogle Scholar
  57. Nyberg S, Eriksson B, Oxenstierna G, Halldin C, Farde L (1999) Suggested minimal effective dose of risperidone based on PET-measured D2 and 5-HT2A receptor occupancy in schizophrenic patients. Am J Psychiatry 156:869–75PubMedGoogle Scholar
  58. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman LF, Galasko DR, Jutel M, Karydas A, Kaye JA, Leszek J, Miller BL, Minthon L, Quinn JF, Rabinovici GD, Robinson WH, Sabbagh MN, So YT, Sparks DL, Tabaton M, Tinklenberg J, Yesavage JA, Tibshirani R, Wyss-Coray T (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–62PubMedCrossRefGoogle Scholar
  59. Shariati GH, Ahangari G, Asadi MR, Poyafard F, Ahmadkhaniha HR (2009) Dopamine receptor gene expression changes in peripheral blood mononuclear cells from schizophrenic patients treated with haloperidol and olanzapine. Eur J Inflammation 7:71–6Google Scholar
  60. Seeman P (2002) Atypical antipsychotics: mechanism of action. Can J Psychiatry 47:27–38PubMedGoogle Scholar
  61. Schwarz E, Izmailov R, Spain M, Barnes A, Mapes JP, Guest PC, Rahmoune H, Pietsch S, Leweke FM, Rothermundt M, Steiner J, Koethe D, Kranaster L, Ohrmann P, Suslow T, Levin Y, Bogerts B, van Beveren NJ, McAllister G, Weber N, Niebuhr D, Cowan D, Yolken RH, Bahn S (2010) Validation of a blood-based laboratory test to aid in the confirmation of a diagnosis of schizophrenia. Biomark Insights 12:39–47Google Scholar
  62. Schwarz E, Guest PC, Rahmoune H, Harris LW, Wang L, Leweke FM, Rothermundt M, Bogerts B, Koethe D, Kranaster L, Ohrmann P, Suslow T, McAllister G, Spain M, Barnes A, van Beveren NJ, Baron-Cohen S, Steiner J, Torrey FE, Yolken RH, Bahn S (2011) Identification of a biological signature for schizophrenia in serum. Mol Psychiatry 17(5):494–502PubMedCrossRefGoogle Scholar
  63. Takahashi M, Hayashi H, Watanabe Y, Sawamura K, Fukui N, Watanabe J, Kitajima T, Yamanouchi Y, Iwata N, Mizukami K, Hori T, Shimoda K, Ujike H, Ozaki N, Iijima K, Takemura K, Aoshima H, Someya T (2010) Diagnostic classification of schizophrenia by neural network analysis of blood-based gene expression signatures. Schizophr Res 119:210–8PubMedCrossRefGoogle Scholar
  64. Tavares H, Yacubian L, Talib LL, Barbosa NR, Gattaz WF (2003) Increased phospholipase A2 activity in schizophrenia with absent response to niacin. Schizophr Res 61:1–6PubMedCrossRefGoogle Scholar
  65. Thomasson-Perret N, Pénélaud PF, Théron D, Gouttefangeas S, Mocaër E (2008) Markers of D(2) and D(3) receptor activity in vivo: PET scan and prolactin. Therapie 63:237–42PubMedCrossRefGoogle Scholar
  66. Tsang TM, Huang JT, Holmes E, Bahn S (2006) Metabolic profiling of plasma from discordant schizophrenia twins: correlation between lipid signals and global functioning in female schizophrenia patients. J Proteome Res 5:756–60PubMedCrossRefGoogle Scholar
  67. Tsuang MT, Nossova N, Yager T, Tsuang MM, Guo SC, Shyu KG, Glatt SJ, Liew CC (2005) Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 133:1–5Google Scholar
  68. Uchida H, Takeuchi H, Graff-Guerrero A, Suzuki T, Watanabe K, Mamo DC (2011) Predicting dopamine D2 receptor occupancy from plasma levels of antipsychotic drugs: a systematic review and pooled analysis. J Clin Psychopharmacol 31(3):318–25PubMedCrossRefGoogle Scholar
  69. Umbricht D, Martin-Facklam M, Pizzagalli F, Youssef E, Yoo K, Dorflinger E, Bausch A, Arrowsmith R, Alberati D, Santarelli L (2011) Glycine transporter type 1 (GlyT1) inhibitor RG1678: results of the proof-of-concept study for the treatment of negative symptoms in schizophrenia. Schizophr Bull 37(Suppl 1):324Google Scholar
  70. USA Food and Drug Administration (2004) Challenges and Opportunities Report—March 2004. Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products.
  71. Visvanathan S, Rahman MU, Keystone E, Genovese M, Klareskog L, Hsia E, Mack M, Buchanan J, Elashoff M, Wagner C (2010) Association of serum markers with improvement in clinical response measures after treatment with golimumab in patients with active rheumatoid arthritis despite receiving methotrexate: results from the GO-FORWARD study. Arthritis Res Ther 12:R211PubMedCrossRefGoogle Scholar
  72. Vogel M, Pfeifer S, Schaub RT, Grabe HJ, Barnow S, Freyberger HJ, Cascorbi I (2004) Decreased levels of dopamine D3 receptor mRNA in schizophrenic and bipolar patients. Neuropsychobiology 50:305–10PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Emilio Merlo Pich
    • 1
    • 2
    Email author
  • Gabriel Vargas
    • 3
  • Enrico Domenici
    • 4
  1. 1.Neuronal Target Discovery Performance Unit, Respiratory Therapeutic Area, GlaxoSmithKline R&DKing of PrussiaUSA
  2. 2.CNS Disease Translational Area, pREDBaselSwitzerland
  3. 3.Medical Sciences Early Development, NeuroscienceThousand OaksUSA
  4. 4.Translational Research Sciences, pREDBaselSwitzerland

Personalised recommendations