Skip to main content

Development of Disease-Modifying Treatment of Schizophrenia

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 213))

Abstract

Development of disease-modifying therapies requires an innovative approach to drug development where novel drugs are designed to target mechanisms of interest rather than to produce preclinical effects similar to those of currently used antipsychotics. Application of such novel strategy will undoubtedly require a very deep understanding of the disease biology that is just starting to emerge. Alternatively, one may let environmental experiences of the diseased individual guide the repair process and use drugs only to facilitate the effects of experience. Such an approach would bring together functional experience that is age-, environment- and disease-dependent with the plasticity resources that may otherwise not be available. There are currently no preclinical drug–environment interaction models that can be claimed to have significant degrees of validity. Therefore, from a drug development perspective, principles that combine acute symptomatic and disease-modifying properties are clearly preferred. The question arises then how such treatments can be differentiated from those that have only symptomatic effects (i.e., most currently used antipsychotic medications). One expectation is that the former will show superior and broader efficacy (especially with longer treatment duration). Another possibility is that disease-modifying drugs will be particularly useful at the very earliest stages of the disease. Society and medical communities may not be ready yet to initiate the treatment as early as during the prodromal phase, but the situation may change by the time the science advances enough to bring a convincing case of a drug with disease-modification potential.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adcock RA, Dale C, Fisher M, Aldebot S, Genevsky A, Simpson GV, Nagarajan S, Vinogradov S (2009) When top-down meets bottom-up: auditory training enhances verbal memory in schizophrenia. Schizophr Bull 35:1132–1141

    Article  PubMed  Google Scholar 

  • Akbarian S (2010) Epigenetics of schizophrenia. Curr Top Behav Neurosci 4:611–628

    Article  PubMed  Google Scholar 

  • Akhondzadeh S, Tabatabaee M, Amini H, Ahmadi Abhari SA, Abbasi SH, Behnam B (2007) Celecoxib as adjunctive therapy in schizophrenia: a double-blind, randomized and placebo-controlled trial. Schizophr Res 90:179–185

    Article  PubMed  Google Scholar 

  • Aloy E, Weinmann O, Pot C, Kasper H, Dodd D, Rülicke T, Rossi F, Schwab M (2006) Synaptic destabilization by neuronal Nogo-A. Brain Cell Biol 35:137–157

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AFT (1998) Catecholamine modulation of prefrontal cortical cognitive function. Trends Cogn Sci 2:436–447

    Article  PubMed  CAS  Google Scholar 

  • Balu DT, Basu AC, Corradi JP, Cacace AM, Coyle JT (2012) The NMDA receptor co-agonists, d-serine and glycine, regulate neuronal dendritic architecture in the somatosensory cortex. Neurobiol Dis 45(2):671–682

    Article  PubMed  CAS  Google Scholar 

  • Bayer TA, Falkai P, Maier W (2011) Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the “two hit hypothesis”. J Psychiatr Res 33:543–548

    Article  Google Scholar 

  • Becker A, Grecksch G (2004) Ketamine-induced changes in rat behaviour: a possible animal model of schizophrenia. Test of predictive validity. Prog Neuropsychopharmacol Biol Psychiatry 28:1267–1277

    Article  PubMed  CAS  Google Scholar 

  • Behrens MM, Sejnowski TJ (2009) Does schizophrenia arise from oxidative dysregulation of parvalbumin-interneurons in the developing cortex? Neuropharmacology 57:193–200

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Paskevich PA, Davidson J, Domesick VB (1985) Synaptic rearrangements in medial prefrontal cortex of haloperidol-treated rats. Brain Res 348:15–20

    Article  PubMed  CAS  Google Scholar 

  • Berretta S (2012) Extracellular matrix abnormalities in schizophrenia. Neuropharmacology 62:1584–1597. doi:10.1016/j.neuropharm.2011.08.010:

    Article  PubMed  CAS  Google Scholar 

  • Buchanan RW, Keefe RSE, Lieberman JA, Barch DM, Csernansky JG, Goff DC, Gold JM, Green MF, Jarskog LF, Javitt DC, Kimhy D, Kraus MS, McEvoy JP, Mesholam-Gately RI, Seidman LJ, Ball MP, McMahon RP, Kern RS, Robinson J, Marder SR (2011) A randomized clinical trial of MK-0777 for the treatment of cognitive impairments in people with schizophrenia. Biol Psychiatry 69:442–449

    Article  PubMed  CAS  Google Scholar 

  • Budel S, Padukkavidana T, Liu BP, Feng Z, Hu F, Johnson S, Lauren J, Park JH, McGee AW, Liao J, Stillman A, Kim JE, Yang BZ, Sodi S, Gelernter J, Zhao H, Hisama F, Arnsten AFT, Strittmatter SM (2008) Genetic variants of Nogo-66 receptor with possible association to schizophrenia block myelin inhibition of axon growth. J Neurosci 28:13161–13172

    Article  PubMed  CAS  Google Scholar 

  • Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF, Weinberger DR (2003) Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry 160:2209–2215

    Article  PubMed  Google Scholar 

  • Cameron HA, Dayer AG (2008) New interneurons in the adult neocortex: small, sparse, but significant? Biol Psychiatry 63:650–655

    Article  PubMed  Google Scholar 

  • Campo CG, Sinagra M, Dl V, Manzoni OJ, Chavis P (2009) Reelin secreted by GABAergic neurons regulates glutamate receptor homeostasis. PLoS One 4:e5505

    Article  PubMed  Google Scholar 

  • Castner SA, Arriza JL, Roberts JC, Mrzljak L, Christian EP, Williams GV (2010) Reversal of ketamine-induced working memory impairments by the GABAA[alpha]2/3 agonist TPA023. Biol Psychiatry 67:998–1001

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Hancock ML, Role LW, Talmage DA (2010) Intramembranous valine linked to schizophrenia is required for neuregulin 1 regulation of the morphological development of cortical neurons. J Neurosci 30:9199–9208

    PubMed  CAS  Google Scholar 

  • Cornblatt BA, Lencz T, Smith CW, Olsen R, Auther AM, Nakayama E, Lesser ML, Tai JY, Shah MR, Foley CA, Kane JM, Correll CU (2007) Can antidepressants be used to treat the schizophrenia prodrome? Results of a prospective, naturalistic treatment study of adolescents. J Clin Psychiatry 68:546–557

    Article  PubMed  CAS  Google Scholar 

  • Croquelois A, Bronchti G, Welker E (2005) Cortical origin of functional recovery in the somatosensory cortex of the adult mouse after thalamic lesion. Eur J Neurosci 21:1798–1806

    Article  PubMed  Google Scholar 

  • Delini-Stula A, Berdah-Tordjman D (1996) Antipsychotic effects of bretazenil, a partial benzodiazepine agonist in acute schizophrenia—a study group report. J Psychiatr Res 30:239–250

    Article  PubMed  CAS  Google Scholar 

  • Dong E, Guidotti A, Grayson DR, Costa E (2007) Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc Natl Acad Sci 104:4676–4681

    Article  PubMed  CAS  Google Scholar 

  • Elsworth JD, Morrow BA, Hajszan T, Leranth C, Roth RH (2011) Phencyclidine-induced loss of asymmetric spine synapses in rodent prefrontal cortex is reversed by acute and chronic treatment with olanzapine. Neuropsychopharmacology 36:2054–2061

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Sananbenesi F, Mungenast A, Tsai LH (2010) Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci 31:605–617

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH (2007) Recovery of learning and memory is associated with chromatin remodelling. Nature 447:178–182

    Article  PubMed  CAS  Google Scholar 

  • Fisher M, Holland C, Merzenich MM, Vinogradov S (2009) Using neuroplasticity-based auditory training to improve verbal memory in schizophrenia. Am J Psychiatry 166:805–811

    Article  PubMed  Google Scholar 

  • Fisher M, Holland C, Subramaniam K, Vinogradov S (2010) Neuroplasticity-based cognitive training in schizophrenia: an interim report on the effects 6 months later. Schizophr Bull 36:869–879

    Article  PubMed  Google Scholar 

  • Foeller E, Celikel T, Feldman DE (2005) Inhibitory sharpening of receptive fields contributes to whisker map plasticity in rat somatosensory cortex. J Neurophysiol 94:4387–4400

    Article  PubMed  Google Scholar 

  • Fu M, Zuo Y (2011) Experience-dependent structural plasticity in the cortex. Trends Neurosci 34:177–187

    Article  PubMed  CAS  Google Scholar 

  • Glick ID, Bosch J, Casey DE (2009) A double-blind randomized trial of mood stabilizer augmentation using lamotrigine and valproate for patients with schizophrenia who are stabilized and partially responsive. J Clin Psychopharmacol 29:267–271

    Article  PubMed  CAS  Google Scholar 

  • Gogolla N, Caroni P, Luthi A, Herry C (2009) Perineuronal nets orotect fear memories from erasure. Science 325:1258–1261

    Article  PubMed  CAS  Google Scholar 

  • Gozzi A, Herdon H, Schwarz A, Bertani S, Crestan V, Turrini G, Bifone A (2008) Pharmacological stimulation of NMDA receptors via co-agonist site suppresses fMRI response to phencyclidine in the rat. Psychopharmacology (Berl) 201:273–284

    Article  CAS  Google Scholar 

  • Guidotti A, Dong E, Kundakovic M, Satta R, Grayson DR, Costa E (2009) Characterization of the action of antipsychotic subtypes on valproate-induced chromatin remodeling. Trends Pharmacol Sci 30:55–60

    Article  PubMed  CAS  Google Scholar 

  • Gundelfinger ED, Frischknecht R, Choquet D, Heine M (2010) Converting juvenile into adult plasticity: a role for the brain’s extracellular matrix. Eur J Neurosci 31:2156–2165

    Article  PubMed  Google Scholar 

  • Haas DA, Harper DG (1992) Ketamine: a review of its pharmacologic properties and use in ambulatory anesthesia. Anesth Prog 39:61–68

    PubMed  CAS  Google Scholar 

  • Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888

    Article  PubMed  CAS  Google Scholar 

  • Holtmaat A, Wilbrecht L, Knott GW, Welker E, Svoboda K (2006) Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441:979–983

    Article  PubMed  CAS  Google Scholar 

  • Insel TR (2010) Rethinking schizophrenia. Nature 468:187–193

    Article  PubMed  CAS  Google Scholar 

  • Iwai Y, Fagiolini M, Obata K, Hensch TK (2003) Rapid critical period induction by tonic inhibition in visual cortex. J Neurosci 23:6695–6702

    PubMed  CAS  Google Scholar 

  • Jaaro-Peled H (2009) Gene models of schizophrenia: DISC1 mouse models. In: Sawa A, Sawa A (eds) Progress in brain research genetic models of schizophrenia. Elsevier, Amsterdam, pp 75–86

    Chapter  Google Scholar 

  • Jawerka M, Colak D, Dimou L, Spiller C, Lagger S, Montgomery RL, Olson EN, Wurst W, Gottlicher M, Gotz M (2010) The specific role of histone deacetylase 2 in adult neurogenesis. Neuron Glia Biol 6:93–107

    Article  PubMed  Google Scholar 

  • Kato TA, Monji A, Mizoguchi Y, Hashioka S, Horikawa H, Seki Y, Kasai M, Utsumi H, Kanba S (2011) Anti-inflammatory properties of antipsychotics via microglia modulations; are antipsychotics a ‘fire extinguisher’ in the brain of schizophrenia? Mini Rev Med Chem 11(7):565–574

    Article  PubMed  CAS  Google Scholar 

  • Keefe RSE, Vinogradov S, Medalia A, Silverstein SM, Bell MD, Dickinson D, Ventura J, Marder SR, Stroup TS (2011) Report from the working group conference on multisite trial design for cognitive remediation in schizophrenia. Schizophr Bull 37:1057–1065

    Article  PubMed  Google Scholar 

  • Kelly DL, Conley RR, Feldman S, Yu Y, McMahon RP, Richardson CM (2006) Adjunct divalproex or lithium to clozapine in treatment-resistant schizophrenia. Psychiatr Q 77:81–95

    Article  PubMed  Google Scholar 

  • Kippin TE, Kapur S, van der Kooy D (2005) Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J Neurosci 25:5815–5823

    Article  PubMed  CAS  Google Scholar 

  • Knott GW, Quairiaux C, Genoud C, Welker E (2002) Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34:265–273

    Article  PubMed  CAS  Google Scholar 

  • Kolluri N, Sun Z, Sampson AR, Lewis DA (2005) Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. Am J Psychiatry 162:1200–1202

    Article  PubMed  Google Scholar 

  • Laan W, Grobbee DE, Selten JP, Heijnen CJ, Kahn RS, Burger H (2010) Adjuvant aspirin therapy reduces symptoms of schizophrenia spectrum disorders: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 71:520–527

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Raiker SJ, Venkatesh K, Geary R, Robak LA, Zhang Y, Yeh HH, Shrager P, Giger RJ (2008) Synaptic function for the Nogo-66 receptor NgR1: regulation of dendritic spine morphology and activity-dependent synaptic strength. J Neurosci 28:2753–2765

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Volk DW, Hashimoto T (2004) Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction. Psychopharmacology (Berl) 174:143–150

    Article  CAS  Google Scholar 

  • Lewis DA, Cho RY, Carter CS, Eklund K, Forster S, Kelly MA, Montrose D (2008) Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. Am J Psychiatry 165:1585–1593

    Article  PubMed  Google Scholar 

  • Lewis DA, Moghaddam B (2006) Cognitive dysfunction in schizophrenia: convergence of {gamma}-aminobutyric acid and glutamate alterations. Arch Neurol 63:1372–1376

    Article  PubMed  Google Scholar 

  • Li Y, Kolb B, Robinson TE (2003) The location of persistent amphetamine-induced changes in the density of dendritic spines on medium spiny neurons in the nucleus accumbens and caudate-putamen. Neuropsychopharmacology 28:1082–1085

    Article  PubMed  CAS  Google Scholar 

  • Loukavenko EA, Ottley MC, Moran JP, Wolff M, Dalrymple-Alford JC (2007) Towards therapy to relieve memory impairment after anterior thalamic lesions: improved spatial working memory after immediate and delayed postoperative enrichment. Eur J Neurosci 26:3267–3276

    Article  PubMed  Google Scholar 

  • Maloku E, Kadriu B, Zhubi A, Dong E, Pibiri F, Satta R, Guidotti A (2011) Selective [alpha]4[beta]2 nicotinic acetylcholine receptor agonists target epigenetic mechanisms in cortical GABAergic neurons. Neuropsychopharmacology 36:1366–1374

    Article  PubMed  CAS  Google Scholar 

  • Marx CE, Bradford DW, Hamer RM, Naylor JC, Allen TB, Lieberman JA, Strauss JL, Kilts JD (2011) Pregnenolone as a novel therapeutic candidate in schizophrenia: emerging preclinical and clinical evidence. Neuroscience 191:78–90

    Article  PubMed  CAS  Google Scholar 

  • McGee AW, Yang Y, Fischer QS, Daw NW, Strittmatter SM (2005) Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309:2222–2226

    Article  PubMed  CAS  Google Scholar 

  • McGurk SR, Twamley EW, Sitzer DI, McHugo GJ, Mueser KT (2007) A meta-analysis of cognitive remediation in schizophrenia. Am J Psychiatry 164:1791–1802

    Article  PubMed  Google Scholar 

  • Meyer U, Schwarz MJ, Müller N (2011) Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond. Pharmacol Ther 132:96–110

    Article  PubMed  CAS  Google Scholar 

  • Mouret A, Gheusi G, Gabellec MM, de Chaumont F, Olivo-Marin JC, Lledo PM (2008) Learning and survival of newly generated neurons: when time matters. J Neurosci 28:11511–11516

    Article  PubMed  CAS  Google Scholar 

  • Müller N, Riedel M, Scheppach C, Brandstatter B, Sokullu S, Krampe K, Ulmschneider M, Engel RR, Möller HJ, Schwarz MJ (2002) Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. Am J Psychiatry 159:1029–1034

    Article  PubMed  Google Scholar 

  • Namba T, Gl M, Song H, Waga C, Enomoto A, Kaibuchi K, Kohsaka S, Uchino S (2011) NMDA receptor regulates migration of newly generated neurons in the adult hippocampus via Disrupted-In-Schizophrenia 1 (DISC1). J Neurochem 118:34–44

    Article  PubMed  CAS  Google Scholar 

  • Newton SS, Duman RS (2007) Neurogenic actions of atypical antipsychotic drugs and therapeutic implications. CNS Drugs 21:715–725

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Labruyere J, Wang G, Wozniak DF, Price MT, Sesma MA (1991) NMDA antagonist neurotoxicity: mechanism and prevention. Science 254:1515–1518

    Article  PubMed  CAS  Google Scholar 

  • Pantazopoulos H, Woo TU, Lim MP, Lange N, Berretta S (2010) Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. Arch Gen Psychiatry 67:155–166

    Article  PubMed  Google Scholar 

  • Papadopoulos CM, Tsai SY, Cheatwood JL, Bollnow MR, Kolb BE, Schwab ME, Kartje GL (2006) Dendritic plasticity in the adult rat following middle cerebral artery occlusion and Nogo-a neutralization. Cereb Cortex 16:529–536

    Article  PubMed  Google Scholar 

  • Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13:1102–1107

    Article  PubMed  CAS  Google Scholar 

  • Pato CN, Wolkowitz OM, Rapaport M, Schulz SC, Pickar D (1989) Benzodiazepine augmentation of neuroleptic treatment in patients with schizophrenia. Psychopharmacol Bull 25:263–266

    PubMed  CAS  Google Scholar 

  • Pavlov I, Rauvala H, Taira T (2006) Enhanced hippocampal GABAergic inhibition in mice overexpressing heparin-binding growth-associated molecule. Neuroscience 139:505–511

    Article  PubMed  CAS  Google Scholar 

  • Pinna G, Costa E, Guidotti A (2009) SSRIs act as selective brain steroidogenic stimulants (SBSSs) at low doses that are inactive on 5-HT reuptake. Curr Opin Pharmacol 9:24–30

    Article  PubMed  CAS  Google Scholar 

  • Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298:1248–1251

    Article  PubMed  CAS  Google Scholar 

  • Powell SB, Risbrough VB, Geyer MA (2003) Potential use of animal models to examine antipsychotic prophylaxis for schizophrenia. Clin Neurosci Res 3:289–296

    Article  CAS  Google Scholar 

  • Rao SG, Williams GV, Goldman-Rakic PS (2000) Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory. J Neurosci 20:485–494

    PubMed  CAS  Google Scholar 

  • Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, Lesch KP (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11:514–522

    Article  PubMed  CAS  Google Scholar 

  • Seeley WW, Turetsky N, Reus VI, Wolkowitz OM (2002) Benzodiazepines in schizophrenia: prefrontal cortex atrophy predicts clinical response to alprazolam augmentation. World J Biol Psychiatry 3:221–224

    Article  PubMed  Google Scholar 

  • Selemon LD, Begovic A, Goldman-Rakic PS, Castner SA (2006) Amphetamine sensitization alters dendritic morphology in prefrontal cortical pyramidal neurons in the non-human primate. Neuropsychopharmacology 32:919–931

    Article  PubMed  Google Scholar 

  • Takahashi N, Sakurai T, Davis KL, Buxbaum JD (2011) Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog Neurobiol 93:13–24

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi H, Sekiguchi A, Taki Y, Yokoyama S, Yomogida Y, Komuro N, Yamanouchi T, Suzuki S, Kawashima R (2010) Training of working memory impacts structural connectivity. J Neurosci 30:3297–3303

    Article  PubMed  CAS  Google Scholar 

  • Tregellas JR, Tanabe J, Rojas DC, Shatti S, Olincy A, Johnson L, Martin LF, Soti F, Kem WR, Leonard S, Freedman R (2011) Effects of an alpha 7-nicotinic agonist on default network activity in schizophrenia. Biol Psychiatry 69:7–11

    Article  PubMed  CAS  Google Scholar 

  • Volz A, Khorsand V, Gillies D, Leucht S (2007) Benzodiazepines for schizophrenia. Cochrane Database Syst Rev Issue 1. Art. No.: CD006391

    Google Scholar 

  • Waddell J, Shors TJ (2008) Neurogenesis, learning and associative strength. Eur J Neurosci 27:3020–3028

    Article  PubMed  Google Scholar 

  • Wang HD, Deutch AY (2008) Dopamine depletion of the prefrontal cortex induces dendritic spine loss: reversal by atypical antipsychotic drug treatment. Neuropsychopharmacology 33:1276–1286

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Fujita I, Murayama Y (2000) Neuronal mechanisms of selectivity for object features revealed by blocking inhibition in inferotemporal cortex. Nat Neurosci 3:807–813

    Article  PubMed  CAS  Google Scholar 

  • Whitford TJ, Kubicki M, Schneiderman JS, O’Donnell LJ, King R, Alvarado JL, Khan U, Markant D, Nestor PG, Niznikiewicz M, McCarley RW, Westin CF, Shenton ME (2010) Corpus callosum abnormalities and their association with psychotic symptoms in patients with schizophrenia. Biol Psychiatry 68:70–77

    Article  PubMed  Google Scholar 

  • Wonodi I, Schwarcz R (2010) Cortical kynurenine pathway metabolism: a novel target for cognitive enhancement in schizophrenia. Schizophr Bull 36:211–218

    Article  PubMed  Google Scholar 

  • Woods SW, Addington J, Cadenhead KS, Cannon TD, Cornblatt BA, Heinssen R, Perkins DO, Seidman LJ, Tsuang MT, Walker EF, McGlashan TH (2009) Validity of the prodromal risk syndrome for first psychosis: findings from the North American Prodrome Longitudinal Study. Schizophr Bull 35:894–908

    Article  PubMed  Google Scholar 

  • Xu H, Yang HJ, Rose GM, Li XM (2011) Recovery of behavioral changes and compromised white matter in C57BL/6 mice exposed to cuprizone: effects of antipsychotic drugs. Front Behav Neurosci 5:31

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Drs. Thomas Appl, Ana-Lucia Rêlo, Marcel van Gaalen, Karsten Wicke, Karla Drescher and Bernhard Müller for numerous discussions of the topic of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Bespalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bespalov, A., Klein, C., Behl, B., Gross, G., Schoemaker, H. (2012). Development of Disease-Modifying Treatment of Schizophrenia. In: Geyer, M., Gross, G. (eds) Novel Antischizophrenia Treatments. Handbook of Experimental Pharmacology, vol 213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25758-2_14

Download citation

Publish with us

Policies and ethics