Skip to main content

Nicotinic Receptors and Functional Regulation of GABA Cell Microcircuitry in Bipolar Disorder and Schizophrenia

  • Chapter
  • First Online:
Book cover Novel Antischizophrenia Treatments

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 213))

Abstract

Studies of the hippocampus in postmortem brains from patients with schizophrenia and bipolar disorder have provided evidence for a defect of GABAergic interneurons. Significant decreases in the expression of GAD67, a marker for GABA cell function, have been found repeatedly in several different brain regions that include the hippocampus. In this region, nicotinic receptors are thought to play an important role in modulating the activity of GABAergic interneurons by influences of excitatory cholinergic afferents on their activity. In bipolar disorder, this influence appears to be particularly prominent in the stratum oriens of sectors CA3/2 and CA1, two sites where these cells constitute the exclusive neuronal cell type. In sector CA3/2, this layer receives a robust excitatory projection from the basolateral amygdala (BLA) and this is thought to play a central role in regulating GABA cells at this locus. Using laser microdissection, recent studies have focused selectively on these two layers and their associated GABA cells using microarray technology. The results have provided support for the idea that nicotinic cholinergic receptors play a particularly important role in regulating the activity of GABA neurons at these loci by regulating the progression of cell cycle and the repair of damaged DNA. In bipolar disorder, there is a prominent reduction in the expression of mRNAs for several different nicotinic subunit isoforms. These decreases could reflect a diminished influence of this receptor system on these GABA cells, particularly in sector CA3/2 where a preponderance of abnormalities have been observed in postmortem studies. In patients with bipolar disorder, excitatory nicotinic cholinergic fibers from the medial septum may converge with glutamatergic fibers from the BLA on GABAergic interneurons in the stratum oriens of CA3/2 and result in disturbances of their genomic and functional integrity, ones that may induce disruptions of the integration of microcircuitry within this region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE Jr, Jones EG (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 52:258–266

    Article  PubMed  CAS  Google Scholar 

  • Albuquerque EX, Pereira EF, Braga MF, Alkondon M (1998) Contribution of nicotinic receptors to the function of synapses in the central nervous system: the action of choline as a selective agonist of alpha 7 receptors. J Physiol Paris 92:309–316

    Article  PubMed  CAS  Google Scholar 

  • Alhatem F, Black JE (2009) Varenicline-induced mania in a bipolar patient. Clin Neuropharmacol 32:117–118

    Article  PubMed  Google Scholar 

  • Alkondon M, Pereira EF, Albuquerque EX (1996) Mapping the location of functional nicotinic and gamma-aminobutyric acidA receptors on hippocampal neurons. J Pharmacol Exp Ther 279:1491–1506

    PubMed  CAS  Google Scholar 

  • Benes FM, Berretta S (2000) Amygdalo-entorhinal inputs to the hippocampal formation in relation to schizophrenia. In: Scharfman HE, Witter MP, Schwarcz R (eds) Annals of the New York academy of sciences. New York Academy of Sciences, New York, NY, pp 293–304

    Google Scholar 

  • Benes FM (2010) Relationship of GAD(67) regulation to cell cycle and DNA repair in GABA neurons in the adult hippocampus: bipolar disorder versus schizophrenia. Cell Cycle 9:625–627

    Article  PubMed  CAS  Google Scholar 

  • Benes FM (2011) Regulation of cell cycle and DNA repair in post-mitotic GABA neurons in psychotic disorders. Neuropharmacology 60:1232–1242

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1–27

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Lim B, Subburaju S (2009) Site-specific regulation of cell cycle and DNA repair in post-mitotic GABA cells in schizophrenic versus bipolars. Proc Natl Acad Sci USA 106:11731–11736

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Vincent SL, Marie A, Khan Y (1996a) Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 75:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Khan Y, Vincent SL, Wickramasinghe R (1996b) Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse 22:338–349

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Kwok EW, Vincent SL, Todtenkopf MS (1998) A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 44:88–97

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL (1991) Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 48:996–1001

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Vincent SL, Alsterberg G, Bird ED, SanGiovanni JP (1992) Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics. J Neurosci 12:924–929

    PubMed  CAS  Google Scholar 

  • Benes FM, Wickramasinghe R, Vincent SL, Khan Y, Todtenkopf M (1997) Uncoupling of GABA(A) and benzodiazepine receptor binding activity in the hippocampal formation of schizophrenic brain. Brain Res 755:121–129

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Lim B, Matzilevich D, Subburaju S, Walsh JP (2008) Circuitry-based gene expression profiles in GABA cells of the trisynaptic pathway in schizophrenics versus bipolars. Proc Natl Acad Sci USA 105:20935–20940

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M (2007) Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci USA 104:10164–10169

    Article  PubMed  CAS  Google Scholar 

  • Berger F, Gage FH, Vijayaraghavan S (1998) Nicotinic receptor-induced apoptotic cell death of hippocampal progenitor cells. J Neurosci 18:6871–6881

    PubMed  CAS  Google Scholar 

  • Berretta S, Munno DW, Benes FM (2001) Amygdalar activation alters the hippocampal GABA system: “partial” modelling for postmortem changes in schizophrenia. J Comp Neurol 431:129–138

    Article  PubMed  CAS  Google Scholar 

  • Berretta S, Lange N, Bhattacharyya S, Sebro R, Garces J, Benes FM (2004) Long-term effects of amygdala GABA receptor blockade on specific subpopulations of hippocampal interneurons. Hippocampus 14:876–894

    Article  PubMed  CAS  Google Scholar 

  • Buhler AV, Dunwiddie TV (2002) Alpha 7-nicotinic acetylcholine receptors on GABAergic interneurons evoke dendritic and somatic inhibition of hippocampal neurons. J Neurophysiol 87:548–557

    PubMed  CAS  Google Scholar 

  • Butuzova MV, Kitchigina VF (2008) Repeated blockade of GABAA receptors in the medial septal region induces epileptiform activity in the hippocampus. Neurosci Lett 434:133–138

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Knudsen ES, Wang JY (1996) Cells arrested in G1 by the v-Abl tyrosine kinase do not express cyclin A despite the hyperphosphorylation of RB. J Biol Chem 271:19637–19640

    Article  PubMed  CAS  Google Scholar 

  • Chu M, Guo J, Chen CY (2005) Long-term exposure to nicotine, via ras pathway, induces cyclin D1 to stimulate G1 cell cycle transition. J Biol Chem 280:6369–6379

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta P, Chellappan SP (2006) Nicotine-mediated cell proliferation and angiogenesis: new twists to an old story. Cell Cycle 5:2324–2328

    Article  PubMed  CAS  Google Scholar 

  • Francois D, Odom A, Kotbi N (2011) A case of late-life onset mania during Varenicline assisted smoking cessation. Int J Geriatr Psychiatry 26:658–659

    Article  PubMed  Google Scholar 

  • Freedman R, Hall M, Adler LE, Leonard S (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38:22–33

    Article  PubMed  CAS  Google Scholar 

  • Freedman R, Wetmore C, Stromberg I, Leonard S, Olson L (1993) Alpha-bungarotoxin binding to hippocampal interneurons: immunocytochemical characterization and effects on growth factor expression. J Neurosci 13:1965–1975

    PubMed  CAS  Google Scholar 

  • Freund TF (2003) Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci 26:489–495

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Antal M (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336:170–173

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Gulyas AI (1997) Inhibitory control of GABAergic interneurons in the hippocampus. Can J Physiol Pharmacol 75:479–487

    Article  PubMed  CAS  Google Scholar 

  • Georgieva L, Dimitrova A, Ivanov D, Nikolov I, Williams NM, Grozeva D, Zaharieva I, Toncheva D, Owen MJ, Kirov G, O’Donovan MC (2008) Support for neuregulin 1 as a susceptibility gene for bipolar disorder and schizophrenia. Biol Psychiatry 64(5):419–427

    Article  PubMed  CAS  Google Scholar 

  • Gisabella B, Bolshakov VY, Benes FM (2005) Regulation of synaptic plasticity in a schizophrenia model. Proc Natl Acad Sci USA 102:13301–13306

    Article  PubMed  CAS  Google Scholar 

  • Gisabella B, Cunningham MG, Bolshakov VY, Benes FM (2009) Amygdala-dependent regulation of electrical properties of hippocampal interneurons in a model of schizophrenia. Biol Psychiatry 65:464–472

    Article  PubMed  Google Scholar 

  • Golebiewski H, Eckersdorf B, Konopacki J (2002) Septal cholinergic mediation of hippocampal theta in the cat. Brain Res Bull 58:323–335

    Article  PubMed  CAS  Google Scholar 

  • Guidotti A, Auta J, Davis JM, Gerevini VD, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 57:1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, Law AJ (2006) Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry 60:132–140

    Article  PubMed  CAS  Google Scholar 

  • Heckers S, Konradi C (2010) Hippocampal pathology in schizophrenia. Curr Top Behav Neurosci 4:529–553

    Article  PubMed  Google Scholar 

  • Helton ES, Chen X (2007) p53 modulation of the DNA damage response. J Cell Biochem 100:883–896

    Article  PubMed  CAS  Google Scholar 

  • Herrup K, Yang Y (2007) Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci 8:368–378

    Article  PubMed  CAS  Google Scholar 

  • Hussain S, Kayne E, Guwanardane N, Petrides G (2011) Varenicline induced mania in a 51 year old patient without history of bipolar illness. Prog Neuropsychopharmacol Biol Psychiatry 35:1162–1163

    Article  PubMed  Google Scholar 

  • Ishida H, Masuhiro Y, Fukushima A, Argueta JG, Yamaguchi N, Shiota S, Hanazawa S (2005) Identification and characterization of novel isoforms of human DP-1: DP-1{alpha} regulates the transcriptional activity of E2F1 as well as cell cycle progression in a dominant-negative manner. J Biol Chem 280:24642–24648

    Article  PubMed  CAS  Google Scholar 

  • Knibbs N, Tsoi DT (2011) Varenicline induces manic relapse in bipolar disorder. Gen Hosp Psychiatry 33(641):e641–e642

    Google Scholar 

  • Kondo E, Gu Z, Horii A, Fukushige S (2005) The thymine DNA glycosylase MBD4 represses transcription and is associated with methylated p16(INK4a) and hMLH1 genes. Mol Cell Biol 25:4388–4396

    Article  PubMed  CAS  Google Scholar 

  • Konradi C, Zimmerman E, Yang K, Lohmann K, Gresch P, Pantazopoulos H, Berretta S, Heckers S (2011a) Hippocampal interneurons in bipolar disorder. Arch Gen Psychiatry 68:340–350

    Article  PubMed  Google Scholar 

  • Konradi C, Yang CK, Zimmerman EI, Lohmann KM, Gresch P, Pantazopoulos H, Berretta S, Heckers S (2011b) Hippocampal interneurons are abnormal in schizophrenia. Schizophr Res 131(1–3):165–173

    Article  PubMed  Google Scholar 

  • Lim AC, Qi RZ (2003) Cyclin-dependent kinases in neural development and degeneration. J Alzheimers Dis 5:329–335

    PubMed  CAS  Google Scholar 

  • Lu G, Seta KA, Millhorn DE (2005) Novel role for cyclin-dependent kinase 2 in neuregulin-induced acetylcholine receptor epsilon subunit expression in differentiated myotubes. J Biol Chem 280:21731–21738

    Article  PubMed  CAS  Google Scholar 

  • Mathew SV, Law AJ, Lipska BK, Davila-Garcia MI, Zamora ED, Mitkus SN, Vakkalanka R, Straub RE, Weinberger DR, Kleinman JE, Hyde TM (2007) Alpha7 nicotinic acetylcholine receptor mRNA expression and binding in postmortem human brain are associated with genetic variation in neuregulin 1. Hum Mol Genet 16:2921–2932

    Article  PubMed  CAS  Google Scholar 

  • McClellan KA, Slack RS (2007) Specific in vivo roles for E2Fs in differentiation and development. Cell Cycle 6:2917–2927

    Article  PubMed  CAS  Google Scholar 

  • McEvoy JP, Allen TB (2002) The importance of nicotinic acetylcholine receptors in schizophrenia, bipolar disorder and Tourette’s syndrome. Curr Drug Targets CNS Neurol Disord 1:433–442

    Article  PubMed  CAS  Google Scholar 

  • Mihalak K, Carroll FI, Luetje CW (2006) Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Mol Pharmacol 70:801–805

    Article  PubMed  CAS  Google Scholar 

  • Okoshi K, Nakayama M, Yan X, Okoshi MP, Schuldt AJ, Marchionni MA, Lorell BH (2004) Neuregulins regulate cardiac parasympathetic activity: muscarinic modulation of beta-adrenergic activity in myocytes from mice with neuregulin-1 gene deletion. Circulation 110:713–717

    Article  PubMed  CAS  Google Scholar 

  • Paleari L, Catassi A, Ciarlo M, Cavalieri Z, Bruzzo C, Servent D, Cesario A, Chessa L, Cilli M, Piccardi F, Granone P, Russo P (2008) Role of alpha7-nicotinic acetylcholine receptor in human non-small cell lung cancer proliferation. Cell Prolif 41:936–959

    Article  PubMed  CAS  Google Scholar 

  • Porter JT, Cauli B, Tsuzuki K, Lambolez B, Rossier J, Audinat E (1999) Selective excitation of subtypes of neocortical interneurons by nicotinic receptors. J Neurosci 19:5228–5235

    PubMed  CAS  Google Scholar 

  • Riley DJ, Lee EY, Lee WH (1994) The retinoblastoma protein: more than a tumor suppressor. Annu Rev Cell Biol 10:1–29

    Article  PubMed  CAS  Google Scholar 

  • Sheng G, Demers M, Subburaju S, Benes FM (2012) Circuitry-based association of copy number variants and gene expression differs in the hippocampus of schizophrenics and bipolars. Arch Gen Psychiatry. Epub date 2012/02/09, ISSN 1538-5636, Accession Number 22309971

    Google Scholar 

  • Si J, Tanowitz M, Won S, Mei L (1998) Regulation by ARIA/neuregulin of acetylcholine receptor gene transcription at the neuromuscular junction. Life Sci 62:1497–1502

    Article  PubMed  CAS  Google Scholar 

  • Slack RS, El-Bizri H, Wong J, Belliveau DJ, Miller FD (1998) A critical temporal requirement for the retinoblastoma protein family during neuronal determination. J Cell Biol 140:1497–1509

    Article  PubMed  CAS  Google Scholar 

  • Slemmer JE, Martin BR, Damaj I (2000) Bupropion is a nicotinic antagonist. J Pharmacol Exp Ther 295:321–327

    PubMed  CAS  Google Scholar 

  • Son JH, Winzer-Serhan UH (2008) Expression of neuronal nicotinic acetylcholine receptor subunit mRNAs in rat hippocampal GABAergic interneurons. J Comp Neurol 511:286–299

    Article  PubMed  CAS  Google Scholar 

  • Sotty F, Danik M, Manseau F, Laplante F, Quirion R, Williams S (2003) Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity. J Physiol 551:927–943

    Article  PubMed  CAS  Google Scholar 

  • Utsugisawa K, Nagane Y, Obara D, Tohgi H (2002) Overexpression of alpha7 nicotinic acetylcholine receptor prevents G1-arrest and DNA fragmentation in PC12 cells after hypoxia. J Neurochem 81:497–505

    Article  PubMed  CAS  Google Scholar 

  • Vogt KE, Regehr WG (2001) Cholinergic modulation of excitatory synaptic transmission in the CA3 area of the hippocampus. J Neurosci 21:75–83

    PubMed  CAS  Google Scholar 

  • Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57:237–245

    Article  PubMed  CAS  Google Scholar 

  • Wanaverbecq N, Semyanov A, Pavlov I, Walker MC, Kullmann DM (2007) Cholinergic axons modulate GABAergic signaling among hippocampal interneurons via postsynaptic alpha 7 nicotinic receptors. J Neurosci 27:5683–5693

    Article  PubMed  CAS  Google Scholar 

  • Woo TU, Walsh JP, Benes FM (2004) Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch Gen Psychiatry 61:649–657

    Article  PubMed  CAS  Google Scholar 

  • Woo TU, Shrestha K, Amstrong C, Minns MM, Walsh JP, Benes FM (2007) Differential alterations of kainate receptor subunits in inhibitory interneurons in the anterior cingulate cortex in schizophrenia and bipolar disorder. Schizophr Res 96:46–61

    Article  PubMed  Google Scholar 

  • Zhong C, Du C, Hancock M, Mertz M, Talmage DA, Role LW (2008) Presynaptic type III neuregulin 1 is required for sustained enhancement of hippocampal transmission by nicotine and for axonal targeting of alpha7 nicotinic acetylcholine receptors. J Neurosci 28:9111–9116

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work has been supported by grants from the National Institutes of Health (MH42261, MH77175, MH/NS31862 and the William P. and Henry B. Test Endowment).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francine M. Benes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benes, F.M. (2012). Nicotinic Receptors and Functional Regulation of GABA Cell Microcircuitry in Bipolar Disorder and Schizophrenia. In: Geyer, M., Gross, G. (eds) Novel Antischizophrenia Treatments. Handbook of Experimental Pharmacology, vol 213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25758-2_13

Download citation

Publish with us

Policies and ethics