Artificial Immune Systems Metaphor for Agent Based Modeling of Crisis Response Operations

  • Khaled M. Khalil
  • M. Abdel-Aziz
  • Taymour T. Nazmy
  • Abdel-Badeeh M. Salem
Part of the Intelligent Systems Reference Library book series (ISRL, volume 33)


Crisis response requires information intensive efforts utilized for reducing uncertainty, calculating and comparing costs and benefits, and managing resources in a fashion beyond those regularly available to handle routine problems. This paper presents an Artificial Immune Systems (AIS) metaphor for agent based modeling of crisis response operations. The presented model proposes integration of hybrid set of aspects (multi-agent systems, built-in defensive model of AIS, situation management, and intensity-based learning) for crisis response operations. In addition, the proposed response model is applied on the spread of pandemic influenza in Egypt as a case study.


Crisis Response Multi-agent Systems Agent-Based Modeling Artificial Immune Systems Process Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brownlee, J.: A Hierarchical Framework of the Acquired Immune System. Technical Report, Complex Intelligent Systems Laboratory (CIS), Swinburne University of Technology, Victoria, Australia (2007)Google Scholar
  2. 2.
    Builder, C.H., Bankes, S.C., Nordin, R.: Command Concepts A Theory Derived from the Practice of Command and Control. RAND Corporation’s National Defense Research Institute (1999) ISBN/EAN: 0-8330-2450-7Google Scholar
  3. 3.
    Chen, R., Sharman, R., Rao, H.R., Upadhyaya, S.: Design Principles for Critical Incident Response Systems. Journal of Information Systems and E-Business Management 5(3), 201–227 (2007)CrossRefGoogle Scholar
  4. 4.
    Dasgupta, D., Forrest, S.: Novelty detection in time series data using ideas from immunology. In: ISCA 5th International Conference on Intelligent Systems (1996)Google Scholar
  5. 5.
    Dasgupta, D., Attoh-Okine, N.: Immunity-Based Systems: A Survey. In: The Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Orlando, Florida, vol. 1, pp. 369–374 (1997)Google Scholar
  6. 6.
    Dasgupta, D.: Immune-based intrusion detection system: A general framework. In: Proceedings of the National Information Systems Security Conference, pp. 147–160 (1999)Google Scholar
  7. 7.
    Dasgupta, D., Krishnakumar, K.T., Wong, D., Berry, M.: Negative Selection Algorithm for Aircraft Fault Detection. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 1–13. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Davia, G.A.: Thoughts on a Possible Rational Reconstruction of the Method of “Rational Reconstruction”. In: Twentieth World Congress of Philosophy, Boston, Massachusetts, U.S.A., pp. 10–15 (1998)Google Scholar
  9. 9.
    Golzari, S., Doraisamy, S., Sulaiman, M.N.B., Udzir, N.L.: A Review on Concepts, Algorithms and Recognition-Based Applications of Artificial Immune System. CCIS, vol. 6, pp. 569–576. Springer, Heidelberg (2008)Google Scholar
  10. 10.
    Gonzalz, F., Dasgupta, D.: Anomaly detection using real-valued negative selection. Genetic Programming and Evolvable Machines, 383–403 (2004)Google Scholar
  11. 11.
    Grant, T.J., Kooter, B.M.: Comparing OODA and Other Models as Operational View C2 Architecture. In: Proceedings, 10th International Command and Control Research and Technology Symposium (ICCRTS 2005), Washington DC, USA (2005)Google Scholar
  12. 12.
    Grant, T.: Unifying Planning and Control using an OODA-based Architecture. In: Proceedings of Annual Conference of South African Institute of Computer Scientists and Information Technologists (SAICSIT), White River, Mpumalanga, South Africa, pp. 111–113 (2005)Google Scholar
  13. 13.
    Hofmeyr, S.A.: An interpretative introduction to the immune system. In: Cohen, I., Segel, L.A. (eds.) Design Principles for the Immune System and other Distributed Autonomous Systems. Oxford University Press, New York (2000)Google Scholar
  14. 14.
    Hunt, J.E., Cooke, D.E.: Learning using an artificial immune system. Journal of Network Computing Applications 19, 189–212 (1996)CrossRefGoogle Scholar
  15. 15.
    Integrated DEFinition (IDEF) methods IDEF0 – Function Modeling Method,
  16. 16.
    Khalil, K.M., Abdel-Aziz, M.H., Nazmy, M.T., Salem, A.M.: The Role of Artificial Intelligence Technologies in Crisis Response. In: Mendel Conference, 14th International Conference on Soft Computing (2008)Google Scholar
  17. 17.
    Khalil, K.M., Abdel-Aziz, M.H., Nazmy, M.T., Salem, A.M.: Multi-Agent Crisis Response systems – Design Requirements and Analysis of Current Systems. In: Fourth International Conference on Intelligence Computing and Information Systems, Cairo, Egypt (2009)Google Scholar
  18. 18.
    Khalil, K.M., Abdel-Aziz, M.H., Nazmy, M.T., Salem, A.M.: Bridging the Gap between Crisis Response Operations and Systems. Annals of University of Craiova, Mathematics and Computer Science Series 36(2), 141–145 (2009) ISSN: 1223-6934zbMATHGoogle Scholar
  19. 19.
    Khalil, K.M., Abdel-Aziz, M.H., Nazmy, M.T., Salem, A.M.: An agent-based modeling for pandemic influenza in Egypt. In: INFOS 2010: 7th International Conference on Informatics and Systems, Cairo, Egypt (2010)Google Scholar
  20. 20.
    Kim, J., Bentley, P.: Toward an artificial immune system for network intrusion detection: An investigation of dynamic clonal selection. In: Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, Hawaii, pp. 1244–1252 (2002)Google Scholar
  21. 21.
    Knight, T., Timmis, J.: AINE: An immunological approach to data mining. In: IEEE International Conference on Data Mining, pp. 297–304 (2001)Google Scholar
  22. 22.
    Krishnakumar, K.: Artificial Immune System Approaches for Aerospace Applications. Technical Report, AIAA (2003)Google Scholar
  23. 23.
    Kubi, J.: Immunology, 5th edn. W H Freeman (2002)Google Scholar
  24. 24.
    Krishna, K.K., Neidhoefer, J.: Immunized adaptive critic for an autonomous aircraft control application. In: Artificial Immune Systems and Their Applications, ch. 20, pp. 221–240. Springer-Verlag, Inc. (1999)Google Scholar
  25. 25.
    Lewis, L.: Managing Computer Networks: A Case-Based Reasoning Approach. Artech House (1995)Google Scholar
  26. 26.
    Perelson, A.S., Weisbuch, G.: Immunology for physicists. Reviews of Modern Physics 69, 1219–1267 (1997)CrossRefGoogle Scholar
  27. 27.
    Shendarkar, A., Vasudevan, K., Lee, S., Son, Y.: Crowd simulation for emergency response using BDI agent based on virtual reality. In: WSC 2006: Proceedings of the 38th Conference on Winter Simulation, pp. 545–553 (2006)Google Scholar
  28. 28.
    Stepney, S., Smith, R.E., Timmis, J., Tyrrell, A.M.: Towards a Conceptual Framework for Artificial Immune Systems. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 53–64. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Twycross, J., Aickelin, U.: Information Fusion in the Immune System. Information Fusion 11(1), 35–44 (2010)CrossRefGoogle Scholar
  30. 30.
    Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, pp. 1–23. MIT Press (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Khaled M. Khalil
    • 1
  • M. Abdel-Aziz
    • 1
  • Taymour T. Nazmy
    • 1
  • Abdel-Badeeh M. Salem
    • 1
  1. 1.Faculty of Computer and Information ScienceAin Shams University CairoEgypt

Personalised recommendations