Skip to main content

Applications of Sound Field Synthesis

  • Chapter
  • First Online:

Part of the book series: T-Labs Series in Telecommunication Services ((TLABS))

Abstract

Based on the theory developed in the previous chapters, applications of sound field synthesis are presented that allow, e.g., for the synthesis of virtual sound sources with complex radiation properties, focused sources, spatially extended sources, moving sources, and alike. Other practical aspects like the storage and transmission of content for sound field synthesis are discussed. It is shown that both model-based as well as data-based representations of spatial audio content can be reproduced by any of the methods treated. A major part of the treatment is dedicated to the reproduction of Ambisonics-encoded sound fields in Wave Field Synthesis. Finally, aspects of the creation of reverberation in sound field synthesis are outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The author thanks Holger Waubke of Acoustics Research Institute at Austrian Academy of Sciences for providing with the notes of his lecture on theoretical acoustics (Waubke 2003), which greatly facilitated the preparation of this section.

References

  • Abramowitz, M., Stegun, I.A (eds) (1968). Handbook of mathematical functions., New York: Dover Publications Inc.

    Google Scholar 

  • Ahrens, J., & Spors, S. (2007, October). Implementation of directional sources in wave field synthesis. In IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) (pp. 66–69).

    Google Scholar 

  • Ahrens, J., & Spors, S. (2008a, March/April). Analytical driving functions for higher order ambisonics. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

    Google Scholar 

  • Ahrens, J., & Spors, S. (2008b, May). Focusing of virtual sound sources in higher order Ambisonics. In 124th Convention of the AES (p. 7378).

    Google Scholar 

  • Ahrens, J., & Spors, S. (2008c, March). Notes on rendering focused directional virtual sound sources in wave field synthesis. In 34. Jahrestagung der Deutschen Gesellschaft für Akustik (DAGA).

    Google Scholar 

  • Ahrens, J., & Spors, S. (2008d, May). Reproduction of moving virtual sound sources with special attention to the Doppler effect. In 124th Convention of the AES.

    Google Scholar 

  • Ahrens, J., & Spors, S. (2009a, May). Alterations of the temporal spectrum in high-resolution sound field reproduction of varying spatial bandwidths. In 126th Convention of the AES (p. 7742).

    Google Scholar 

  • Ahrens, J., & Spors, S. (2009b ,June). Spatial encoding and decoding of focused virtual sound sources. In Ambisonics Symposium.

    Google Scholar 

  • Ahrens, J., & Spors, S. (2010, March). An analytical approach to 2.5D sound field reproduction employing linear distributions of non-omnidirectional loudspeakers. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 105–108.

    Google Scholar 

  • Ahrens, J., & Spors, S. (2011a) Wave Field Synthesis of Moving Virtual Sound Sources With Complex Radiation Properties. JASA (accepted for publication)

    Google Scholar 

  • Ahrens, J., & Spors, S. (2011b, October). Two physical models for spatially extended virtual sound sources. In 131st Convention of the AES.

    Google Scholar 

  • Ahrens, J., & Spors, S. (2011c). Wave field synthesis of a sound field described by spherical harmonics expansion coefficients. JASA. accepted for publication.

    Google Scholar 

  • Ajdler, T., Faller, C., Sbaiz, L., & Vetterli, M. (2008). Sound field analysis along a circle and its applications to HRTF interpolation. JAES, 56(3), 156–275.

    Google Scholar 

  • Algazi, V.R., Duda, R.O., Thompson, D.M., & Avendano, C. (2001, October). The CIPIC HRTF database. In IEEE workshop on applications of signal processing to audio and electroacoustics (pp. 99–102).

    Google Scholar 

  • Allen, J.B., & Berkley, D.A. (1979). Image method for efficiently simulating small-room acoustics. JASA, 65(4), 943–948.

    Google Scholar 

  • Arfken, G., & Weber, H. (2005). Mathematical methods for physicists (6 ed.). San Diego: Elsevier Academic Press.

    Google Scholar 

  • Barron, M. (1971). The subjective effects of first reflections in concert halls - the need for lateral reflections. Journal of Sound and Vibration, 15(4), 475–494.

    Article  Google Scholar 

  • Beranek, L.L. (2008). Concert hall acoustics—2008. JAES, 56(7/8), 532–544.

    Google Scholar 

  • Blackstock, D.T. (2000). Fundamentals of physical acoustics., New York: Wiley.

    Google Scholar 

  • Blauert, J. (1997). Spatial hearing., New York: Springer.

    Google Scholar 

  • Blauert, J., & Lindemann, W. (1986a). Auditory spaciousness: Some further psychoacoustic analyses. JASA, 80(2), 533–542.

    Google Scholar 

  • Blauert, J., & Lindemann, W. (1986b). Spatial mapping of intracranial auditory events for various degrees of interaural coherence. JASA, 79(3), 806–813.

    Google Scholar 

  • Boone, M., Horbach, U., & de Bruijn, W. (1999, May). Virtual surround speakers with wave field synthesis. In 106th Convention of the AES.

    Google Scholar 

  • Boone, M.M., Cho, W.-H., & Ih, J.-G. (2009). Design of a highly directional endfire loudspeaker array. JAES, 57(5), 309–325.

    Google Scholar 

  • Bradley, J.S., & Soulodre, G.A. (1995). The influence of late arriving energy on spatial impression. JASA, 97(4), 2263–2271.

    Google Scholar 

  • Bradley, J.S., & Soulodre, G.A. (1995). Objective measures of listener envelopment. JASA, 98(5), 2590–2597.

    Google Scholar 

  • Bronkhorst, A.W. (1999). Auditory distance perception in rooms. Nature, 397, 517–520.

    Article  Google Scholar 

  • Bronkhorst, A.W., & Houtgast, T. (1999). Auditory distance perception in rooms. Nature, 397(6719), 517–520.

    Article  Google Scholar 

  • Brungart, D.S., Durlach, N.I., & Rabinowitz, W.M. (1999). Auditory localization of nearby sources II localization of a broadband source. JASA, 106(4), 1956–1968.

    Google Scholar 

  • Byerly, W.E. (1959). An elementary treatise on Fourier Series and spherical, cylindricaland ellipsoidal hamonics, with applications to problems in mathematical physics., New York: Dover Publications Inc.

    Google Scholar 

  • Caulkins, T., & Warusfel, O. (2006, May). Characterization of the reverberant sound field emitted by a wave field synthesis driven loudspeaker array. In 120th Convention of the AES (p. 6712).

    Google Scholar 

  • Chomyszyn, J. (1995). Distance of sound in reverberant fields. PhD thesis, CCRMA, Stanford University.

    Google Scholar 

  • Corteel, E. (2007). Synthesis of directional sources using wave field synthesis, Possibilities and Limitations. EURASIP Journal on Advances in Signal Processing, Article ID 90509.

    Google Scholar 

  • Daniel, J. (2001). Représentation de champs acoustiques, application á la transmission et á la reproduction de sc‘enes sonores complexes dans un contexte multimédia [Representations of Sound Fields, Application to the Transmission and Reproduction of Complex Sound Scenes in a Multimedia Context]. PhD thesis, Université Paris 6. text in French.

    Google Scholar 

  • Daniel, J. (2003, May). Spatial sound encoding including near field effect: Introducing distance coding filters and a viable, New ambisonic format. In 23rd International Conference of the AES.

    Google Scholar 

  • Daniel, J., Rault, J.-B., & Polack, J.-D. (1998). Ambisonics encoding of other audio formats for multiple listening conditions. In 105th Convention fo the AES (p. 4795)

    Google Scholar 

  • Daniel, J., & Moreau, S. (2004). Further study of sound field coding with higher order ambisonics. In 116th Convention of the AES.

    Google Scholar 

  • de Vries, D. (2009). Wave field synthesis. AES monograph, New York: AES.

    Google Scholar 

  • de Brujin, W. (2004). Application of wave field synthesis in videoconferencing. PhD thesis, Delft University of Technology.

    Google Scholar 

  • de Vries, D., Reijnen, A. J., & Schonewille, M.A. (1994). The wave field synthesis concept applied to generation of reflections and reverberation. In 96th Convention of the AES.

    Google Scholar 

  • Doppler, C. (1842). Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels [On the colored light of double stars and some other stars of the sky]. Abhandlungen der königlichen böhmischen Gesellschaft der Wissenschaften, 2, 465–482. text in German.

    Google Scholar 

  • Duraiswami, R., Zotkin, D.N., & Gumerov, N.A. (2004, May). Interpolation and range extrapolation of HRTFs. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 45-48).

    Google Scholar 

  • Duraiswami, R., Zotkin, D. N., Li, Z., Grassi, E., Gumerov, N.A., & Davis, L.S. (2005, October). High Order spatial audio capture and its binaural head-tracked playback over headphones with HRTF cues. In 119th Convention of the AES (p. 6540).

    Google Scholar 

  • Fazenda, J. (2004). Perception of room modes in critical listening spaces. PhD thesis, University of Salford.

    Google Scholar 

  • Fazi, F. (2010). Sound field reproduction. Ph.D. thesis, University of Southampton.

    Google Scholar 

  • Franck, A. (2008). Efficient algorithms and structures for fractional delay filtering based on Lagrange interpolation. JAES, 56(12), 1036–1056.

    Google Scholar 

  • Franck, A., Gröfe, A., Korn, T., & Strau, M. (2007, September). Reproduction of moving virtual sound sources by wave field synthesis: An analysis of artifacts. In 32nd International Conference of the AES.

    Google Scholar 

  • Geier, M., Spors, S., & Ahrens, J. (2008, May). The Soundscape Renderer: A unified spatial audio reproduction framework for arbitrary rendering methods. In 124th Convention of the AES.

    Google Scholar 

  • Geier, M., Ahrens, J., & Spors, S. (2010). Object-based audio reproduction and the audio scene description format. Organised Sound, 15(3), 219–227.

    Article  Google Scholar 

  • Geier, M., Wierstorf, H., Ahrens, J., Wechsung, I., Raake, A., & Spors, S. (2010, May). Perceptual evaluation of focused sources in wave field synthesis. In 128th Convention of the AES (p. 8069).

    Google Scholar 

  • Gerzon, M.A. (1973). Periphony: With-height sound reproduction. JAES, 21, 2–10.

    Google Scholar 

  • Gerzon, M. (1974). Surround sound psychoacoustics. Wireless World, 80, 483–486 (March).

    Google Scholar 

  • Gerzon, M.A. (1992). Psychoacoustic decoders for multispeaker stereo and surround sound. In 93rd Convention fo the AES (p. 3406).

    Google Scholar 

  • Girod, B., Rabenstein, R., & Stenger, A. (2001). Signals and systems., New York: Wiley.

    Google Scholar 

  • Griesinger, D. (1997). The psychoacoustics of apparent source width, spaciousness and envelopment in performance spaces. Acustica, 83(4), 721–731.

    Google Scholar 

  • Gumerov, A.N., & Duraiswami, R. (2004). Fast multipole methods for the Helmholtz equation in three dimensions., Amsterdam: Elsevier.

    Google Scholar 

  • Hahn, N., Choi, K., Chung, H., & Sung, K.-M. (2010, May). Trajectory sampling for computationally efficient reproduction of moving sound sources. In 128th Convention of the AES.

    Google Scholar 

  • Hannemann, J., & Donohue, K.D. (2008). Virtual sound source rendering using a multipole-expansion and method-of-moments approach. JAES, 56(6), 473–481.

    Google Scholar 

  • Horbach, U., & Boone, M. (2000, February). Practical implementation of databased wave field reproduction system. In 108th Convention of the AES.

    Google Scholar 

  • Hulsebos, E. (2004). Auralization using wave field synthesis. PhD Thesis, Delft University of Technology.

    Google Scholar 

  • Izhaki, R. (2007). Mixing audio-concepts practices and tools., Oxford: Focal Press.

    Google Scholar 

  • Jackson, L. (2000). A correction to impulse invariance. IEEE Signal Processing Letters, 7, 273–275 (October).

    Article  Google Scholar 

  • Jackson, J.D. (1998). Classical electrodynamics (3 ed.). New York: Wiley.

    Google Scholar 

  • Jot, J. M., Cerveau, L., & Warusfel, O. (1997, October). Analysis and synthesis of room reverberation based on a statistical time-frequency model. In 103rd Convention of the AES.

    Google Scholar 

  • Karjalainen, M., Antsalol, P., Mäkivirta, A., & Välimäki, V. (2004, May). Perception of temporal decay of low frequency room modes. In 116th Convention of the AES.

    Google Scholar 

  • Kay, S.M. (1988). Modern spectral estimation., NJ: Englewood Cliffs, Prentice- Hall.

    MATH  Google Scholar 

  • Kirkeby, O., & Nelson, P.A. (1993). Reproduction of plane wave sound fields. JASA, 94(5), 2992–3000.

    Google Scholar 

  • Kuhn, C., Pellegrini, R., Leckschat, D., & Corteel, E. (2003, October). An approach to miking and mixing of music ensembles using wave field synthesis. In 115th Convention of the AES (p. 5929).

    Google Scholar 

  • Kuttruff, H. (2009). Room Acoustics (5th ed.). London: Spon Press.

    Google Scholar 

  • Laakso, T.I, Välimäki, V., Karjalainen, M., & Laine, U.K. (1996). Splitting the unit delay. IEEE Signal Processing Magazine, 13, 30–60 (January).

    Article  Google Scholar 

  • Laitinen, M.-V., Pihlajamäki, T., Erkut, C., & Pulkki, V. (2011) Parametric timefrequency representation of spatial sound in virtual worlds. submitted to ACM Transactions on Applications Perception.

    Google Scholar 

  • Leppington, F.G., & Levine, H. (1987). The sound field of a pulsating sphere in unsteady rectilinear motion. Proceedings of the Royal Society of London Series A , 412, 199–221.

    Article  MathSciNet  MATH  Google Scholar 

  • Lindau, A., Kosanke, L., & Weinzierl, S. (2010 May). Perceptual evaluation of physical predictors of the mixing time in binaural room impulse responses. In 128th Convention of the AES.

    Google Scholar 

  • Lokki, T. (2002). Physically-based auralization—design, implementation, and evaluation. PhD thesis, Helsinki University of Technology.

    Google Scholar 

  • Mandel, l., & Wolf, E. (1995). Optical coherence and quantum optics., Cambridge: Cambridge University Press.

    Google Scholar 

  • Meesawat, K., & i, D. Hammershø. (2003 October). The time when the reverberant tail in binaural room impulse response begins. In 115th Convention of the AES.

    Google Scholar 

  • Melchior, F. (2011). Investigations on spatial sound design based on measured room impulses. PhD thesis, Delft University of Technology.

    Google Scholar 

  • Melchior, F., Sladeczek, C., de Vries, D., & Fröhlich, B. (2008, May). User- dependent optimization of wave field synthesis reproduction for directive sound fields. In 124th Convention of the AES.

    Google Scholar 

  • Melchior, F., & Spors, S. (2010). Spatial audio reproduction: from theory to production. In tutorial, 129th Convention of the AES, San Francisco, CA, USA.

    Google Scholar 

  • Menzies, D. (2007). Ambisonic synthesis of complex sources. JAES, 55(10), 864–876.

    Google Scholar 

  • Menzies, D. (2008). Nearfield binaural synthesis report. In Acoustics 08.

    Google Scholar 

  • Menzies, D. 2009 (June). Calculation of near-field head related transfer functions using point source representations. In Ambisonics Symposium (pp. 23–28).

    Google Scholar 

  • Merimaa, J. (2006). Analysis, synthesis, and perception of spatial sound - binaural localization modeling and multichannel loudspeaker reproduction. PhD thesis, Helsinki University of Technology.

    Google Scholar 

  • Meyer, J., & Elko, G. (2002, May). A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

    Google Scholar 

  • Moreau, S., Daniel, J., & Bertet, S. (2006, May). 3D Sound field recording with higher order Ambisonics - objective measurements and validation of a 4th order spherical microphone. In 120th Convention of the AES (p. 6857).

    Google Scholar 

  • Morse, P.M., & Ingard, K.U. (1968). Theoretical acoustics., New York: McGraw-Hill Book Company.

    Google Scholar 

  • Nogués, M., Corteel, E., & Warusfel, O. (2003, September). Monitoring distance effect with wave field synthesis. In 6th International Conference on Digital Audio Effects (DAFx).

    Google Scholar 

  • Noisternig, M., Sontacchi, A., Musil, T., & Höldrich, R. (2003, June). A 3D Ambisonics based binaural sound reproduction system. In 24th AES International Conference.

    Google Scholar 

  • Oldfield, R., Drumm, I., & Hirst, J. (2010, May). The perception of focused sources in wave field synthesis as a function of listener angle. In 128th Convention of the AES.

    Google Scholar 

  • Peters, N., Place, T., & Lossius, T. (2009). SpatDIF-Spatial Sound. Description Interchange Format. http://spatdif.org.

  • Peters, N., Marentakis, G., & McAdams, S. (2011). Current technologies and compositional practices for spatialization: A qualitative and quantitative analysis. Computer Music Journal, 35(1), 10–27.

    Article  Google Scholar 

  • Poletti, M.A. (1996). The design of encoding functions for stereophonic and polyphonic sound systems. JAES, 44(11), 948–963.

    Google Scholar 

  • Pomberger, H. (2008). Angular and radial directivity control for spherical loudspeaker arrays. M. Sc. thesis, IEM Graz.

    Google Scholar 

  • Pomberger, H., & Zotter, F. (2009, June). An Ambisonics format for flexible playback layouts. In Ambisonics Symposium.

    Google Scholar 

  • Pulkki, V. (2007). Spatial sound reproduction with Directional Audio Coding. JAES, 55(6), 503–516.

    Google Scholar 

  • Pulkki, V. (2010, October). New spatial audio coding methods based on time- frequency processing. In Workshop presented at the 40th Conference of the AES.

    Google Scholar 

  • Rabenstein, R., Spors S. (2007). Multichannel sound field reproduction. In J. Benesty, M. Sondhi, & Y. Huang (Eds.), Springer handbook on speech processing and speech communication (pp. 1095–1114). Berlin: Springer.

    Google Scholar 

  • Rafaely, B. (2004). Plane-wave decomposition of the sound field on a sphere by spherical convolution. JASA, 116(4), 2149–2157.

    Google Scholar 

  • Rafaely, B. (2005). Analysis and design of spherical microphone arrays. IEEE Transactions on Speech and Audio Process, 13(1), 135–143.

    Article  Google Scholar 

  • Rafaely, B., Weiss, B., & Bachmat, E. (2007). Spatial aliasing in spherical microphone arrays. IEEE Transactions on Signal Processing, 55(3), 1003–1010.

    Article  MathSciNet  Google Scholar 

  • Reilly, A., McGrath, D., & Dalenbäck, B.-I. (1995, October). Using auralisation for creating animated 3-D sound fields across multiple speakers. In 99th Convention of the AES (p. 4127).

    Google Scholar 

  • Reisinger, M. (2002). Neue Konzepte der Tondarstellung bei Wiedergabe mittels Wellenfeldsynthese. Diplomarbeit, Fachhochschule Dsseldorf. text in German.

    Google Scholar 

  • Riekehof-Boehmer, H., & Wittek, H. (2011, May). Prediction of perceived width of stereo microphone setups. In 130th Convention of the AES.

    Google Scholar 

  • Rumsey, F. (2001). Spatial audio., Oxford: Focal Press.

    Google Scholar 

  • Rumsey, F. (2002). Spatial quality evaluation for reproduced sound: Terminology, meaning, and a scene-based paradigm. JAES, 50(9), 651–666.

    Google Scholar 

  • Sanson, J., Corteel, E., & Warusfel, O. (2008, May). Objective and subjective analysis of localization accuracy in wave field synthesis. In 124th Convention of the AES (p. 7361).

    Google Scholar 

  • Santala, O., & Pulkki, V. (2011). Directional perception of distributed sound sources. JASA, 129(3), 1522–1530.

    Google Scholar 

  • Scheirer, E.D., Väänänen, R., & Houpaniemi, V. (1999). AudioBIFS: Describing audio scenes with the MPEG-4 multimedia standard. IEEE Trans on Multimedia, 1(3), 237–250.

    Article  Google Scholar 

  • Schroeder, M.R. (1959). Measurement of sound diffusion in reverberation chambers. JASA, 31(11), 1407–1414.

    Google Scholar 

  • Shinn-Cunningham, B. (2001, May). Localizing sound in rooms. In ACM SIGGRAPH and EUROGRAPHICS Campfire (pp. 17–22).

    Google Scholar 

  • Sommerfeld, A. (1955). Partial differential equations in physics., New York: Academic Press Inc.

    Google Scholar 

  • Sommerfeld, A. (1950). Optik [Optics]. Wiesbaden: Dieterich’sche Verlagsbuchhandlung. text in German.

    Google Scholar 

  • Sonke, J.-J. (2000). Variable acoustics by wave field synthesis. PhD thesis, Delft University of Technology.

    Google Scholar 

  • Spors, S. (2007, October). Extension of an analytic secondary source selection criterion for wave field synthesis. In 123th Convention of the AES (p. 7299).

    Google Scholar 

  • Spors, S., & Ahrens, J. (2008, October). A comparison of wave field synthesis and higher-order Ambisonics with respect to physical properties and spatial sampling. In 125th Convention of the AES (p. 7556).

    Google Scholar 

  • Spors, S., & Ahrens, J. (2009, May). Spatial aliasing artifacts of wave field synthesis for the reproduction of virtual point sources. In 126th Convention of the AES.

    Google Scholar 

  • Spors, S., Wierstorf, H., Geier, M., & Ahrens, J. (2009, October). Physical and perceptual properties of focused sources in wave field synthesis. In 127th Convention of the AES (p. 7914).

    Google Scholar 

  • Spors, S., & Ahrens, J. (2010a, May). Analysis and improvement of preequalization in 2.5-dimensional wave field synthesis. In 128th Convention of the AES.

    Google Scholar 

  • Spors, S., & Ahrens, J. (2010b, October). Local sound field synthesis by virtual secondary sources. In 40th Conference of the AES (pp. 6–3).

    Google Scholar 

  • Spors, S., & Ahrens, J. (2010c, March). Reproduction of focused sources by the spectral division method. In IEEE International Symposium on Communication, Control and Signal Processing (ISCCSP).

    Google Scholar 

  • Spors, S., Kuscher, V., & Ahrens, J. (2011a, October). Efficient realization of model-based rendering for 2.5-dimensional near-field compensated higher order ambisonics. In IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA).

    Google Scholar 

  • Spors, S., & Ahrens, J. (2011b, May). Interpolation and range extrapolation of head-related transfer functions using virtual local sound field synthesis. In 130th Convention of the AES.

    Google Scholar 

  • Start, E.W. (1997). Direct sound enhancement by wave field synthesis. PhD thesis, Delft University of Technology.

    Google Scholar 

  • The SoundScape Renderer Team (2011). The SoundScape Renderer. de/?id=ssr.

  • Theile, G. (1981). Zur Theorie der optimalen Wiedergabe von stereofonischen Signalen über Lautsprecher und Kopfhörer. Rundfunktech. Mitt., 25, 155–170.

    Google Scholar 

  • Theile, G., Wittek, H., & Reisinger, M. (2003, June). Potential wavefield synthesis applications in the multichannel stereophonic world. In 24th International Conference of the AES

    Google Scholar 

  • Toole, F.E. (2008). Sound reproduction: The acoustics and psychoacoustics of loudspeakers and rooms., Oxford: Focal Press.

    Google Scholar 

  • Travis, C. (2009, June). New mixed-order scheme for ambisonic signals. In Ambisonics Symposium.

    Google Scholar 

  • Verheijen, E.N.G., (1997). Sound reproduction by wave field synthesis. PhD thesis, Delft University of Technology.

    Google Scholar 

  • Verron, C., Aramaki, M., Kronland-Martinet, R., & Pallone, G. (2010). A 3-D immersive synthesizer for environmental sounds. IEEE Transactions on Audio Speech and Language Processing, 18(6), 1550–1561.

    Article  Google Scholar 

  • Vogel, P. (1993). Application of wave field synthesis in room acoustics. PhD thesis, Delft University of Technology.

    Google Scholar 

  • Völk, F., Faccinelli, E., & Fastl, H. (2010, March). Überlegungen zu Möglichkeiten und Grenzen virtueller Wellenfeldsynthese [Considerations on possibilities and limitations of virtual Wave Field Synthesis]. In DAGA.

    Google Scholar 

  • Vorländer, M. (2008). Auralization - Fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality., Berlin: Springer.

    Google Scholar 

  • Wagner, A., Walther, A., Melchior, F., & Strau, M. (2004, May). Generation of highly immersive atmospheres for wave field synthesis reproduction. In 116th Convention of the AES.

    Google Scholar 

  • Ward, D.B., & Abhayapala, T.D. (2001). Reproduction of a plane-wave sound field using an array of loudspeakers. IEEE Transactions on Speech and Audio Processing, 9(6), 697–707.

    Article  Google Scholar 

  • Warren, C.H.E. (1976). A note on moving multipole sources of sound. Journal of Sound and Vibration, 44(1), 3–13.

    Article  MATH  Google Scholar 

  • Warusfel, O. Retrieved (2011, August). Listen HRTF database. salles/listen/.

  • Waubke, H. (2003). Aufgabenstellung zur Seminararbeit zur Vorlesung “Theoretische Akustik” [Problem for term paper for the lecture “Theoretical Acoustics”]. IEM Graz. text in German.

    Google Scholar 

  • Weisstein, E.W. (2002). CRC Concise encyclopedia of mathematics., London: Chapman and Hall/CRC.

    Book  Google Scholar 

  • Wierstorf, H., Geier, M., & Spors, S. (2010, November). Reducing artifacts of focused sources in wave field synthesis. In 129th Convention of the AES.

    Google Scholar 

  • Wierstorf, H., Geier, M., Raake, A., & Spors, S. (2011, May). A free database of head-related impulse response measurements in the horizontal plane with multiple distances. In 130th Convention of the AES. Data are available at http://audio.qu.tu-berlin.de/?p=641.

  • Williams, E.G. (1999). Fourier acoustics: Sound radiation and nearfield acoustic holography., London: Academic Press.

    Google Scholar 

  • Wittek, H. (2007). Perceptual differences between wavefield synthesis and stereophony. PhD thesis, University of Surrey.

    Google Scholar 

  • Yon, S., Tanter, M., & Fink, M. (2003). Sound focusing in rooms: The timereversal approach. JASA, 113(3), 1533–1543.

    Google Scholar 

  • Zhang, W., Abhayapala, T.D., Kennedy, R.A., & Duraiswami, R. (2009, April). Modal expansion of HRTFs: Continuous representation in frequency-range-angle. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 285-288).

    Google Scholar 

  • Zotkin, D.N., Duraiswami, R., & Gumerov, N.A. (2010). Plane-wave decomposition of acoustical scenes via spherical and cylindrical microphone arrays. IEEE Transactions on Audio Speech and Language Processing, 18(1), 2–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahrens, J. (2012). Applications of Sound Field Synthesis. In: Analytic Methods of Sound Field Synthesis. T-Labs Series in Telecommunication Services. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25743-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25743-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25742-1

  • Online ISBN: 978-3-642-25743-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics