Distributed Methodology of CanTree Construction

  • Swarupa Rani K.
  • Chillarige Raghavendra Rao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7080)


Single pass construction process of the CanTree for deriving association rules has been attracting researchers for data mining and incremental data mining to accommodate growth of transactional logs. This paper proposes five step mechanism for building a CanTree in HPC. The Pima Indian Diabetes Data Set considered for demonstrating a proposed mechanism and its performance.


Knowledge discovery and data mining Tree Structure Frequent Sets Incremental Mining CanTree HPC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang, S., Wu, X., Zhang, C.: Multi-Database Mining. IEEE Computational Intelligence Bulletin 2(1), 5–13 (2003)Google Scholar
  2. 2.
    Cheung, D.W., Han, J., Ng, V.T., Wong, C.Y.: Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique. In: Proc. the International Conference on Data Engineering, pp. 106–114 (1996)Google Scholar
  3. 3.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers (2001)Google Scholar
  4. 4.
    Thomas, S., et al.: An Efficient Algorithm for the Incremental Updation of Association Rules in Large Databases. In: Knowledge Discovery and Data Mining (1997)Google Scholar
  5. 5.
    Thomas, S.: Architectures and optimizations for integrating Data Mining algorithms with Database Systems. In: CSE. University of Florida, Gainesville (1998)Google Scholar
  6. 6.
    Thomas, S., Chakravarthy, S.: Incremental Mining of Constrained Associations. In: Proc. of the 7th Intl. Conf. of High Performance Computing, HiPC (2000)Google Scholar
  7. 7.
    Cheung, D.W., Lee, S.D., Kao, B.: A general Incremental Technique for Mining Discovered Association Rules. In: Proc. International Conference on Database System for Advanced Applications, pp. 185–194 (1997)Google Scholar
  8. 8.
    Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between sets of items in large databases. In: ACM SIGMOD International Conference on the Management of Data, Washington, D.C (1993)Google Scholar
  9. 9.
    Agrawal, R., Srikant, R.: Fast Algorithms for mining association rules. In: 20th Int’l Conference on Very Large Databases, VLDB (1994)Google Scholar
  10. 10.
    Savasere, A., Omiecinsky, E., Navathe, S.: An efficient algorithm for mining association rules in large databases. In: 21st Int’l Cong. on Very Large Databases (VLDB), Zurich, Switzerland (1995)Google Scholar
  11. 11.
    Chen, Y.: An Efficient Parallel Algorithm for Mining Association Rules in Large Databases. Georgia Institute of Technology, Atlanta (1998)Google Scholar
  12. 12.
    Shenoy, P., et al.: Turbo-charging Vertical Mining of Large Databases. In: ACM SIGMOD Int’l Conference on Management of Data, Dallas (2000)Google Scholar
  13. 13.
    Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns without Candidate Generation. In: ACM SIGMOD Int’l Conference on Management of Data, Dallas (2000)Google Scholar
  14. 14.
    Tsai, P.S.M., Lee, C.C., Chen, A.L.P.: An Efficient Approach for Incremental Association Rule Mining, Technical Report (1998)Google Scholar
  15. 15.
    Masseglia, F., Poncelet, P., Teisseire, M.: Incremental mining of sequential patterns in large databases. Data Knowl. Eng. 46(1), 97–121 (2003)CrossRefGoogle Scholar
  16. 16.
    Lee, C.-H., Lin, C.-R., Chen, M.-S.: Sliding-window filtering: An Efficient Algorithm for Incremental Mining. In: Proceedings of the Tenth CanTree International Conference on Information and Knowledge Management, Atlanta, Georgia, USA, pp. 263–270 (2001)Google Scholar
  17. 17.
    Li, H., Wang, Y., Zhang, D., Zhang, M., Chang, E.: Pfp: parallel fp-growth for query recommendation. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 107–114 (2008)Google Scholar
  18. 18.
    Sarawagi, S., Thomas, S., Agrawal, R.: Integrating Association Rule Mining with Relational Database System: Alternatives and Implications. In: ACM SIGMOD Int’l Conference on Management of Data, Seattle, Washington (1998)Google Scholar
  19. 19.
    Leung, C.K., Khan, Q.I., Li, Z., Hoque, T.: CanTree: A Canonical-Order Tree for Incremental Frequent-Pattern Mining. Knowledge and Information Systems 11(3), 287–311 (2007)CrossRefGoogle Scholar
  20. 20.
    Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: CP-Tree: A Tree Structure for Single-Pass Frequent Pattern Mining. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 1022–1027. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Mishra, P., Chakravarthy, S.: Evaluation of K-way Join and its variants for Association Rule Mining. Information and Technology Lab at The University of Texas at Arlington, TX (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Swarupa Rani K.
    • 1
  • Chillarige Raghavendra Rao
    • 1
  1. 1.Department of Computer and Information SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations