Advertisement

Extensions to IQuickReduct

  • Sai Prasad P.S.V.S.
  • Chillarige Raghavendra Rao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7080)

Abstract

IQuickReduct algorithm is an improvement over a poplar reduct computing algorithm known as QuickReduct algorithm. IQuickReduct algorithm uses variable precision rough set (VPRS) calculations as a heuristic for determining the attribute importance for selection into reduct set to resolve ambiguous situations in Quick Reduct algorithm. An apt heuristic for selecting an attribute helps in producing shorter non redundant reducts. This paper explores the selection of input attribute in ambiguous situations by adopting several heuristic approaches instead of VPRS heuristic. Extensive experimentation has been carried out on the standard datasets and the results are analyzed.

Keywords

Rough Sets Feature Selection Reduct Quick Reduct IQuickReduct 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chouchoulas, A., Shen, Q.: Rough Set Aided Keyword Reduction for Text Categorization. Applied Artificial Intelligence 15, 843–873 (2001)CrossRefGoogle Scholar
  2. 2.
    Ding, S., Ding, H.: Research and Development of Attribute Reduction Algorithm Based on Rough Set. In: 2010 Chinese Control and Decision Conference, pp. 648–653 (2010)Google Scholar
  3. 3.
    Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal of Machine Learning Research 3, 1157–1182 (2003)zbMATHGoogle Scholar
  4. 4.
    Katzberg, J.D., Ziarko, W.: Variable precision rough sets with asymmetric bounds. In: Ziarko, W. (ed.) Rough Sets, Fuzzy Sets and Knowledge Discovery, pp. 167–177. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  5. 5.
    Kerber, R.: ChiMerge: Discretization of Numeric Attributes. In: Tenth National Conference on Artificial Intelligence, AAAI 1992, California, pp. 123–128 (1992)Google Scholar
  6. 6.
    Kotsiantis, S., Kanellopoulos, D.: Discretization Techniques, A Recent Survey. GESTS International Transactions on Computer Science and Engineering 32, 47–58 (2006)Google Scholar
  7. 7.
    Matlab Software, http://www.mathworks.com/
  8. 8.
    Nguyen, H.S., Skowron, A.: Boolean Reasoning for Feature Extraction Problems. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1997. LNCS (LNAI), vol. 1325, pp. 117–126. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Øhrn, A., Komorowski, J.: ROSETTA: A Rough Set Toolkit for Analysis of Data. In: Proc. Third International Joint Conference on Information Sciences, Fifth International Workshop on Rough Sets and Soft Computing (RSSC 1997), Durham, NC, USA, vol. 3, pp. 403–407 (1997)Google Scholar
  10. 10.
    Pawlak, Z.: Rough Sets. International Journal of Computer and Information Science 11, 341–356 (1982)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ranabir Singh, S., Hema Murthy, A., Timothy Gonsalves, A.: Feature Selection for Text Classification based on Gini Coefficient of Inequality. In: Fourth International Workshop on Feature Selection in Data Mining, JMLR 2010, Hyderabad, pp. 76–85 (2010)Google Scholar
  12. 12.
    Richard Jensen collection of datasets, http://users.aber.ac.uk/rkj/datasets/index.php
  13. 13.
    Rough Set Exploration System, http://alfa.mimuw.edu.pl/~rses/
  14. 14.
    Sai Prasad, P.S.V.S., Raghavendra Rao, C.: IQuickReduct: An Improvement to QuickReduct Algorithm. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 152–159. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Slezak, D.: Approximate Entropy Reducts. Fundamenta Informaticae 53, 365–390 (2002)MathSciNetzbMATHGoogle Scholar
  16. 16.
    UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/datasets.html
  17. 17.
    Xinying, C., Yuefan, L.: A Heuristic Reduction Algorithm Based on Entropy of Attribute. Journal of Convergence Information Technology 6, 209–216 (2011)Google Scholar
  18. 18.
    Yue, B., Yao, W., Abraham, A., Liu, H.: A New Rough Set Reduct Algorithm Based on Particle Swarm Optimization. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007, Part I. LNCS, vol. 4527, pp. 397–406. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Zeng, A., Pan, D., Zheng, Q.-L., Peng, H.: Knowledge acquisition based on rough set theoryand principal component analysis. IEEE Intelligent Systems 21(2), 78–85 (2006)CrossRefGoogle Scholar
  20. 20.
    Zhang, J., Wang, J., Li, D., He, H., Sun, J.: A New Heuristic Reduct Algorithm base on Rough Sets Theory. In: Dong, G., Tang, C., Wang, W. (eds.) WAIM 2003. LNCS, vol. 2762, pp. 247–253. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sai Prasad P.S.V.S.
    • 1
  • Chillarige Raghavendra Rao
    • 1
  1. 1.Department of Computer and Information SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations