Advertisement

A Resilient Voting Scheme for Improving Secondary Structure Prediction

  • Chittaranjan Hota
  • Filippo Ledda
  • Giuliano Armano
Conference paper
  • 724 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7080)

Abstract

This paper presents a novel approach called Resilient Voting Scheme (RVS), which combines different predictors (experts) with the goal of improving the overall accuracy. As combining multiple experts involves uncertainty and imprecise information, the proposed approach cancels out the impact of bad performers while computing a single collective prediction. RVS uses a genetic algorithm to assign a reliability to each expert, by using the Q3 measure as fitness function. A resilient voting is then used to improve the accuracy of the final prediction. RVS has been tested with well known datasets and has been compared with other state-of-the-art combination techniques (i.e., averaging and stacking). Experimental results demonstrate the validity of the approach.

Keywords

Artificial Neural Networks Voting Resilient Protocols Protein Secondary Structure Prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Ani, A., Duriche, M.: A new technique for combining multiple classifiers using dempster-shafer theory of evidence. Artificial Intelligence Research 17, 333–361 (2002)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Armano, G., Mancosu, G., Milanesi, L., Orro, A., Saba, M., Vargiu, E.: A hybrid genetic-neural system for predicting protein secondary structure. BMC Bioinformatics 6, S3 (2005)CrossRefGoogle Scholar
  3. 3.
    Bystroff, C., Thousson, V., Baker, D.: Hmm-str: A hidden markov model for local sequence structure correlations in proteins. J. Mol. Biol. 301, 173–190 (2000)CrossRefGoogle Scholar
  4. 4.
    Chou, P.Y., Fasman, G.D.: Conformational parameters for amino acids in helical, sheet, and random coil regions calculated from proteins. Biochemistry 13, 211–222 (1974)CrossRefGoogle Scholar
  5. 5.
    Cuff, J.A., Barton, G.J.: Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins: Structure, Function, and Genetics 34, 508–519 (1999)CrossRefGoogle Scholar
  6. 6.
    Eyrich, A.V., Marti-Renom, M.A., Przybylski, D., Madhusudhan, M.S., Fiser, A., Pazos, F., Valencia, A., Sali, A., Rost, B.: Eva: continuous automatic evaluation of protein structure prediction servers. Bioinformatics 17(12), 1242–1243 (2001)CrossRefGoogle Scholar
  7. 7.
    Johansson, R., Bostrom, H., Karlsson, A.: A study on class-specifically discounted belief for ensemble classifiers. In: Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 614–619 (2008)Google Scholar
  8. 8.
    Jones, D.T.: Protein secondary structure prediction based on position specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999)CrossRefGoogle Scholar
  9. 9.
    Ledda, F.: Protein secondary structure prediction: Novel methods and software architectures. In: PhD Thesis, DIEE, University of Cagliari, Italy (2011)Google Scholar
  10. 10.
    Ledda, F., Milanesi, L., Vargiu, E.: Game: A generic architecture based on multiple experts for predicting protein structures. Communications of SIWN 3, 107–112 (2008)Google Scholar
  11. 11.
    Lei, C., Karel, M.S.: A generalized adaptive ensemble generation and aggregation approach for multiple classifier systems. Pattern Recognition 42, 629–644 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Lin, H.-N., Chang, J.-M., Wu, K.-P., Sung, T.-Y., Hsu, W.-L.: A knowledge based hybrid method for protein secondary structure prediction based on local prediction confidence. Bioinformatics 21, 3227–3233 (2005)CrossRefGoogle Scholar
  13. 13.
    Lin, K.-L., Lin, C.Y., Huang, C.D., Chang, H.M., Yang, C.Y., Lin, C.T., Tang, C.Y., Hsu, D.F.: Feature seclection and combination criteria for improving accuracy in protein structure prediction. IEEE Transactions on Nanobioscience 6, 186–196 (2007)CrossRefGoogle Scholar
  14. 14.
    Liu, Y.C., Lin, C.-Y., Yu, K.-M., Tang, C.-Y.: Rap: Refine a prediction of protein secondary structure. In: Proceedings of 23rd Workshop on Combinatorial Mathematics and Computation Theory, pp. 34–38 (2006)Google Scholar
  15. 15.
    Maclin, R., Shavlik, J.W.: Combining the predictions of multiple classifiers: Using competitive learning to initialize neural networks. In: Proceedings of 14th International Joint Conference on Artificial intelligence (IJCAI 1995), pp. 524–531 (1995)Google Scholar
  16. 16.
    Matthews, B.W.: Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim. Biophys. Acta 405, 442–451 (1975)CrossRefGoogle Scholar
  17. 17.
    Mount, D.: Bioinformatics: Sequence and Genome Analysis, 2nd edn. CSHL Press, NY (2004)Google Scholar
  18. 18.
    Qian, N., Sejnowski, T.J.: Predicting the secondary structure of globular proteins using neural network models. Journal of Mol. Biology 202, 865–884 (1988)CrossRefGoogle Scholar
  19. 19.
    Quali, M., King, R.D.: Cascaded multiple classifiers for secondary structure prediction. Protein Science 9, 1162–1176 (2000)CrossRefGoogle Scholar
  20. 20.
    Robert, B., G-Osuna, R., Quek, F.: Attribute bagging: Improving accuracy of classifier ensembles by using random feature subset. Pattern Recognition 36, 1291–1302 (2003)CrossRefzbMATHGoogle Scholar
  21. 21.
    Rost, B.: Review: Protein secondary structure prediction continues to rise. J. Struct. Biol. 134, 204–218 (2001)CrossRefGoogle Scholar
  22. 22.
    Rost, B., Sander, C.: Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232, 584–599 (1993)CrossRefGoogle Scholar
  23. 23.
    Rus, S.K., Krogh, A.: Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments. J. Comp. Biol. 3, 163–183 (1996)CrossRefGoogle Scholar
  24. 24.
    Taheri, J., Zomaya, A.Y.: A voting scheme to improve the secondary structure prediction. In: Proceedings of ACS/IEEE International Conference on Computer Systems and Applications (AICCSA), pp. 1–7 (2010)Google Scholar
  25. 25.
    Vogiatzis, D., Frosyniotis, D., Papadopoulos, G.A.: The protein structure prediction module of the prot-grid information system. In: Proceedings of ICEIS, pp. 372–378 (2003)Google Scholar
  26. 26.
    Ward, J.J., Mcguffin, L.J., Buxton, B.F., Jones, D.T.: Secondary structure prediction with support vector machines. Bioinformatics 19, 1650–1655 (2003)CrossRefGoogle Scholar
  27. 27.
    Zemla, A., Vencolvas, C., Fidelis, K., Rost, B.: A modified definition of SOV, a segment-based measure for protein secondary structure prediction assesment. Proteins 34, 220–223 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chittaranjan Hota
    • 1
  • Filippo Ledda
    • 2
  • Giuliano Armano
    • 2
  1. 1.Dept. of Computer ScienceBITSHyderabadIndia
  2. 2.Dept. of Electronics & Computer EngineeringUniversity of CagliariItaly

Personalised recommendations