Crisp and Soft Clustering of Mobile Calls

  • Pawan Lingras
  • Parag Bhalchandra
  • Santosh Khamitkar
  • Satish Mekewad
  • Ravindra Rathod
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7080)


Mobile communication devices are gaining even faster acceptance than the proliferation of web in 1990’s. Mobile communication spans a wide variety of protocols ranging from phone calls, text messages/SMS, e-mail data, web data, to social networking. Characterization of users is an important issue in the design and maintenance of mobile services with unprecedented commercial implications. Analysis of the data from the mobile devices faces certain challenges that are not commonly observed in the conventional data analysis. The likelihood of bad or incomplete mobile communication data is higher than the conventional applications. The clusters and associations in phone call mining do not necessarily have crisp boundaries. Researchers have studied the possibility of using fuzzy sets in clustering of web resources. The issues from web mining are further compounded due to multi-modal communication in the mobile world. This paper compares crisp and fuzzy clustering of a mobile phone call dataset. This emerging area of application is called mobile phone call mining, which involves application of data mining techniques to discover usage patterns from the mobile phone call data. The analysis includes comparison of centroids, cluster quality of crisp and fuzzy clustering schemes and analysis of their semantics. Since fuzzy clustering is descriptive, equivalent rough clustering schemes are used for succinct comparison of cluster sizes.


Phone Call Fuzzy Cluster Phone Number Cluster Scheme Soft Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BBC News, Over 5 billion mobile phone connections worldwide (2010),
  2. 2.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dunn, J.C.: Well separated clusters and optimal fuzzy partitions. Journal of Cybernetics 4, 95–104 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Eagle, N.: The Reality Mining Data Readme (2010),
  5. 5.
    Eagle, N., Pentland, A., Lazer, D.: Inferring Social Network Structure using Mobile Phone Data. Proc. of the National Academy of Sciences 106(36), 15274–15278 (2009)CrossRefGoogle Scholar
  6. 6.
    Farrugia, M., Quigley, A.: Cell phone Mini Challenge: Node-link animation award animating multivariate dynamic social networks. In: IEEE Symposium on Visual Analytics Science and Technology, VAST 2008, pp. 215–216 (2008)Google Scholar
  7. 7.
    Halkidi, M., Batistakis, Y., Vazirgianni, M.: Clustering Validity Checking Methods: Part II. ACM SIGMOD Record 31(3), 19–27 (2002)CrossRefGoogle Scholar
  8. 8.
    Hartigan, J.A., Wong, M.A.: Algorithm AS136: A K-Means Clustering Algorithm. Applied Statistics 28, 100–108 (1979)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hong, T.-P., Tseng, L.-H., Chien, B.-C.: Mining from incomplete quantitative data by fuzzy rough sets. Expert Systems with Applications 37(3), 2644–2653 (2010)CrossRefGoogle Scholar
  10. 10.
    Joshi, A., Krishnapuram, R.: Robust Fuzzy Clustering Methods to Support Web Mining. In: Proceedings of the Workshop on Data Mining and Knowledge Discovery, SIGMOD, pp. 15/1-15/8 (1998)Google Scholar
  11. 11.
    Joshi, M., Lingras, P., Rao, C.R.: Correlating Fuzzy and Rough Clustering. Fundamenta Informaticae (to appear, 2011)Google Scholar
  12. 12.
    Lingras, P.: Unsupervised Rough Set Classification using GAs. Journal Of Intelligent Information Systems 16(3), 215–228 (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lingras, P.: Rough set clustering for Web mining. In: Proceedings of 2002 IEEE International Conference on Fuzzy Systems (2002)Google Scholar
  14. 14.
    Lingras, P., West, C.: Interval Set Clustering of Web Users with Rough K-means. Journal of Intelligent Information Systems 23(1), 5–16 (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Lingras, P., Hogo, M., Snorek, M., Leonard, B.: Clustering Supermarket Customers Using Rough Set Based Kohonen Networks. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 169–173. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Lingras, P., Hogo, M., Snorek, M.: Interval Set Clustering of Web Users using Modified Kohonen Self-Organizing Maps based on the Properties of Rough Sets. Web Intelligence and Agent Systems: An International Journal 2(3), 217–230 (2004)Google Scholar
  17. 17.
    Lingras, P., Yan, R., West, C.: Fuzzy C-Means Clustering of Web Users for Educational Sites. In: Xiang, Y., Chaib-draa, B. (eds.) Canadian AI 2003. LNCS (LNAI), vol. 2671, pp. 557–562. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    MacQueen, J.: Some Methods fir Classification and Analysis of Multivariate Observations. In: Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)Google Scholar
  19. 19.
    Maji, P., Pal, S.K.: Rough Set Based Generalized Fuzzy C-Means Algorithm and Quantitative Indices. IEEE Transactions on Systems, Man, and Cybernetics, Part B 37(6), 1529–1540 (2007)CrossRefGoogle Scholar
  20. 20.
    Nanavati, A.A., Gurumurthy, S., Das, G., Chakraborty, D., Dasgupta, K., Mukherjea, S., Joshi, A.: On the structural properties of massive telecom call graphs: findings and implications. In: Proc. of 15th ACM Conference on Information and Knowledge Management, pp. 435–444 (2006)Google Scholar
  21. 21.
    Peters, G.: Some Refinements of Rough k-Means. Pattern Recognition 39(8), 1481–1491 (2006)CrossRefzbMATHGoogle Scholar
  22. 22.
    Peters, J.F., Skowron, A., Suraj, Z., Rzasa, W., Borkowski, M.: Clustering: A rough set approach to constructing information granules. In: Proc. of 6th International Conference Soft Computing and Distributed Processing, SCDP 2002, pp. 57–61 (2002)Google Scholar
  23. 23.
    R, The R Project for Statistical Computing (2010),
  24. 24.
    Sharma, S.C., Werner, A.: Improved method of grouping provincewide permanent traffic counters. Transportation Research Record 815, 13–18 (1981)Google Scholar
  25. 25.
    Ye, Q., Zhu, T., Hu, D., Wu, B., Du, N., Wang, B.: Cell phone mini challenge award: Social network accuracy - exploring temporal communication in mobile call graphs. In: IEEE Symposium on Visual Analytics Science and Technology, VAST 2008, pp. 207–208 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pawan Lingras
    • 1
    • 2
  • Parag Bhalchandra
    • 1
  • Santosh Khamitkar
    • 1
  • Satish Mekewad
    • 1
  • Ravindra Rathod
    • 1
  1. 1.Swami Ramanand Teerth Marathwada UniversityNandedIndia
  2. 2.Saint Mary’s UniversityHalifaxCanada

Personalised recommendations