Skip to main content

Consistency in Diatom Response to Metal-Contaminated Environments

  • Chapter
  • First Online:
Emerging and Priority Pollutants in Rivers

Abstract

Diatoms play a key role in the functioning of streams, and their sensitivity to many environmental factors has led to the development of numerous diatom-based indices used in water quality assessment. Although diatom-based monitoring of metal contamination is not currently included in water quality monitoring programs, the effects of metals on diatom communities have been studied in many polluted watersheds as well as in laboratory experiments, underlying their high potential for metal contamination assessment. Here, we review the response of diatoms to metal pollution from individual level (e.g. size, growth form, and morphological abnormalities) to community structure (replacement of sensitive species by tolerant ones). These potential effects are then tested using a large, multi-country database combining diatom and metal information. Metal contamination proved to be a strong driver of the community structure, and enabled for the identification of tolerant species like Cocconeis placentula var. euglypta, Eolimna minima, Fragilaria gracilis, Nitzschia sociabilis, Pinnularia parvulissima, and Surirella angusta. Among the traits tested, diatom cell size and the occurrence of diatom deformities were found to be good indicators of high metal contamination. This work provides a basis for further use of diatoms as indicators of metal pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hill BH, Herlihy AT, Kaufmann PR, Stevenson RJ, McCormick FH, Johnson CB (2000) Use of periphyton assemblage data as an index of biotic integrity. J N Am Benthol Soc 19(1):50–67

    Google Scholar 

  2. Potapova MG, Charles DF (2002) Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. J Biogeogr 29(2):167–187

    Google Scholar 

  3. Coste M, Boutry S, Tison-Rosebery J, Delmas F (2009) Improvements of the Biological Diatom Index (BDI): description and efficiency of the new version (BDI-2006). Ecol Indic 9(4):621–650

    CAS  Google Scholar 

  4. Dell’Uomo A (2004) L’indice diatomico di eutrofizzazione/polluzione (EPI-D) nel monitoraggio delle acque correnti. Linee guida, APAT, ARPAT, CTN_AIM, Roma, Firenze, p 101

    Google Scholar 

  5. Hürlimann J, Niederhauser P (2007) Méthodes d’analyse et d’appréciation des cours d’eau. Diatomées Niveau R (région). État de l’environnement n° 0740. Office fédéral de l’environnement, Berne, p 132

    Google Scholar 

  6. Kelly MG, Whitton BA (1995) The Trophic Diatom Index: a new index for monitoring eutrophication in rivers. J Appl Phycol 7:433–444

    Google Scholar 

  7. Lange-Bertalot H (1979) Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64:285–304

    Google Scholar 

  8. Lavoie I, Campeau S, Grenier M, Dillon PJ (2006) A diatom-based index for the biological assessment of eastern Canadian rivers: an application of correspondence analysis (CA). Can J Fish Aquat Sci 63(8):1793–1811

    Google Scholar 

  9. Cordonier A, Gallina N, Nirel PM (2010) Essay on the characterization of environmental factors structuring communities of epilithic diatoms in the major rivers of the canton of Geneva, Switzerland. Vie Milieu 60(3):223–232

    Google Scholar 

  10. Rimet F, Goma J, Cambra J, Bertuzzi E, Cantonati M, Cappelletti C, Ciutti F, Cordonier A, Coste M, Delmas F, Tison J, Tudesque L, Vidal H, Ector L (2007) Benthic diatoms in western European streams with altitudes above 800 M: characterisation of the main assemblages and correspondence with ecoregions. Diatom Res 22:147–188

    Google Scholar 

  11. Tison J, Park YS, Coste M, Wasson JG, Ector L, Rimet F, Delmas F (2005) Typology of diatom communities and the influence of hydro-ecoregions: a study on the French hydrosystem scale. Water Res 39(14):3177–3188

    CAS  Google Scholar 

  12. Tornés E, Cambra J, Gomà J, Leira M, Ortiz R, Sabater S (2007) Indicator taxa of benthic diatom communities: a case study in Mediterranean streams. Annal Limnol 43(1):1–11

    Google Scholar 

  13. Cattaneo A, Asioli A, Comoli P, Manca M (1998) Organisms’ response in a chronically polluted lake supports hypothesized link between stress and size. Limnol Oceanogr 43(8):1938–1943

    Google Scholar 

  14. Cattaneo A, Couillard Y, Wunsam S, Courcelles M (2004) Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). J Paleolimnol 32:163–175

    Google Scholar 

  15. Bertrand M, Schoefs B, Siffel P, Rohacek K, Molnar I (2001) Cadmium inhibits epoxidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum Tricornutum. FEBS Lett 508(1):153–156

    CAS  Google Scholar 

  16. Guanzon NG, Nakahara H, Yoshida Y (1994) Inhibitory effects of heavy-metals on growth and photosynthesis of 3 freshwater microalgae. Fish Sci 60(4):379–384

    CAS  Google Scholar 

  17. Husaini Y, Rai LC (1991) Studies on nitrogen and phosphorus-metabolism and the photosynthetic electron-transport system of Nostoc linckia under cadmium stress. J Plant Physiol 138(4):429–435

    CAS  Google Scholar 

  18. Joux-Arab L, Berthet B, Robert JM (2000) Do toxicity and accumulation of copper change during size reduction in the marine pennate diatom Haslea ostrearia? Mar Biol 136(2):323–330

    CAS  Google Scholar 

  19. Torres E, Cid A, Herrero C, Abalde J (1998) Removal of cadmium ions by the marine diatom Phaeodactylum tricornutum Bohlin accumulation and long-term kinetics of uptake. Bioresour Technol 63(3):213–220

    CAS  Google Scholar 

  20. Chang SI, Reinfelder JR (2000) Bioaccumulation, subcellular distribution and trophic transfer of copper in a coastal marine diatom. Environ Sci Technol 34(23):4931–4935

    CAS  Google Scholar 

  21. Duong TT, Morin S, Coste M, Herlory O, Feurtet-Mazel A, Boudou A (2010) Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic diatoms in relation with biofilm maturity. Sci Total Environ 408(3):552–562

    CAS  Google Scholar 

  22. Guanzon NG, Nakahara H, Nishimura K (1995) Accumulation of copper, zinc, cadmium, and their combinations by 3 freshwater microalgae. Fish Sci 61(1):149–156

    CAS  Google Scholar 

  23. Sunda WG, Huntsman SA (1998) Control of Cd concentrations in a coastal diatom by interactions among free ionic Cd, Zn, and Mn in seawater. Environ Sci Technol 32(19):2961–2968

    CAS  Google Scholar 

  24. Wang W-X, Dei RC (2001) Metal uptake in a coastal diatom influenced by major nutrients (N, P, and Si). Water Res 35(1):315–321

    CAS  Google Scholar 

  25. Knauert S, Knauer K (2008) The role of reactive oxygen species in copper toxicity to two freshwater green algae. J Phycol 44(2):311–319

    CAS  Google Scholar 

  26. Hill WR, Bednarek AT, Larsen IL (2000) Cadmium sorption and toxicity in autotrophic biofilms. Can J Fish Aquat Sci 57(3):530–537

    CAS  Google Scholar 

  27. Soldo D, Behra R (2000) Long-term effects of copper on the structure of freshwater periphyton communities and their tolerance to copper, zinc, nickel and silver. Aquat Toxicol 47(3–4):181–189

    CAS  Google Scholar 

  28. Cardozo KHM, De Oliveira MAL, Tavares MFM, Colepicolo P, Pinto E (2002) Daily oscillation of fatty acids and malondialdehyde in the dinoflagellate Lingulodinium polyedrum. Biol Rhythm Res 33(4):371–381

    CAS  Google Scholar 

  29. Gold C, Feurtet-Mazel A, Coste M, Boudou A (2003) Impacts of Cd and Zn on the development of periphytic diatom communities in artificial streams located along a river pollution gradient. Arch Environ Contam Toxicol 44:189–197

    CAS  Google Scholar 

  30. Payne CD, Price NM (1999) Effects of cadmium toxicity on growth and elemental composition of marine phytoplankton. J Phycol 35(2):293–302

    CAS  Google Scholar 

  31. Pérès F (1996) Etude des effets de quatre contaminants: - herbicide (Isoproturon), dérivés du mercure (mercure inorganique, méthylmercure), cadmium – sur les communautés au sein de microcosmes d'eau douce. PhD thesis, Univ. Paul Sabatier, Toulouse, p 176

    Google Scholar 

  32. Perrein-Ettajani H, Amiard JC, Haure J, Renaud C (1999) Effects of metals (Ag, Cd, Cu) on the biochemical composition and compartmentalization of these metals in two microalgae Skeletonema costatum and Tetraselmis suecica. Can J Fish Aquat Sci 56(10):1757–1765

    CAS  Google Scholar 

  33. Peterson CG (1996) Mechanisms of lotic microalgal colonization following space-clearing disturbances acting at different spatial scales. Oikos 77(3):417–435

    Google Scholar 

  34. Paulsson M, Nystrom B, Blanck H (2000) Long-term toxicity of zinc to bacteria and algae in periphyton communities from the river Göta Älv, based on a microcosm study. Aquat Toxicol 47(3–4):243–257

    CAS  Google Scholar 

  35. Campbell PGC, Errecalde O, Fortin C, Hiriart-Baer VR, Vigneault B (2002) Metal bioavailability to phytoplankton – applicability of the biotic ligand model. Comp Biochem Physiol C Toxicol Pharmacol 133(1–2):189–206

    Google Scholar 

  36. Khoshmanesh A, Lawson F, Prince IG (1997) Cell surface area as a major parameter in the uptake of cadmium by unicellular green microalgae. Chem Eng J 65(1):13–19

    CAS  Google Scholar 

  37. Vasconcelos MTSD, Leal MFC (2001) Adsorption and uptake of Cu by Emiliania huxleyi in natural seawater. Environ Sci Technol 35(3):508–515

    CAS  Google Scholar 

  38. Medley CN, Clements WH (1998) Responses of diatom communities to heavy metals in streams: the influence of longitudinal variation. Ecol Appl 8(3):631–644

    Google Scholar 

  39. Morin S, Vivas-Nogues M, Duong TT, Boudou A, Coste M, Delmas F (2007) Dynamics of benthic diatom colonization in a cadmium/zinc-polluted river (Riou-Mort, France). Fundam Appl Limnol 168(2):179–187

    CAS  Google Scholar 

  40. Drebes G (1977) Sexuality. In: Werner D (ed) The biology of diatoms (Botanical monographs). Blackwell, Oxford, pp 250–283

    Google Scholar 

  41. Chepurnov VA, Mann DG, von Dassow P, Vanormelingen P, Gillard J, Inzé D, Sabbe K, Vyverman W (2008) In search of new tractable diatoms for experimental biology. Bioessays 30(7):692–702

    Google Scholar 

  42. Cattaneo A, Galanti G, Gentinetta S, Romo S (1998) Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwat Biol 39(4):725–740

    Google Scholar 

  43. Gensemer RW (1990) Role of aluminium and growth rate on changes in cell size and silica content of silica-limited populations of Asterionella ralfsii var. americana (Bacillariophyceae). J Phycol 26(2):250–258

    CAS  Google Scholar 

  44. Morin S, Coste M (2006) Metal-induced shifts in the morphology of diatoms from the Riou Mort and Riou Viou streams (South West France). In: Acs E, Kiss KT, Padisák J, Szabó K (eds) Use of algae for monitoring rivers VI. Hungarian Algological Society, Göd, Hungary, Balatonfüred, pp 91–106

    Google Scholar 

  45. Gensemer RW, Smith REH, Duthie HC (1995) Interactions of pH and Aluminium on cell length reduction in Asterionella ralfsii var. americana Körner. In: Marino D, Montresor M (eds) Proceedings of the 13th International Diatom Symposium, 1–7 Sep 1994, Koeltz Scientific Books Königstein, Acquafredda di Maratea, Italy, pp 39–46

    Google Scholar 

  46. Potapova M, Snoeijs P (1997) The natural life cycle in wild populations of Diatoma moniliformis (Bacillariophyceae) and its disruption in an aberrant environment. J Phycol 33(6):924–937

    Google Scholar 

  47. Stevenson RJ, Peterson CG, Kirschtel DB, King CC, Tuchman NC (1991) Density-dependent growth, ecological strategies and effects of nutrients and shading on benthic diatom succession in streams. J Phycol 27(1):59–69

    Google Scholar 

  48. Stevenson RJ, Bahls L (1999) Periphyton protocols. In: Barbour MT, Gerritsen J, Snyder BD, Stribling JB (eds) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd edn. U.S. Environmental Protection Agency; Office of Water, Washington, DC, pp 1–22

    Google Scholar 

  49. Takamura N, Hatakeyama S, Sugaya Y (1990) Seasonal changes in species composition and production of periphyton in an urban river running through an abandoned copper mining region. Jpn J Limnol 51(4):225–235

    CAS  Google Scholar 

  50. Gold C (2002) Etude des effets de la pollution métallique (Cd/Zn) sur la structure des communautés de diatomées périphytiques des cours d'eau. Approches expérimentales in situ et en laboratoire. PhD thesis – Univ. Bordeaux I Ecole Doct. Sciences du vivant, Géosciences et Sciences de l'Environnement, p 175

    Google Scholar 

  51. Ivorra N (2000) Metal induced succession in benthic diatom consortia. PhD thesis, University of Amsterdam, Faculty of Science, Department of Aquatic Ecology and Ecotoxicology, p 157.

    Google Scholar 

  52. Morin S, Duong TT, Boutry S, and Coste M (2008) Modulation de la toxicité des métaux vis-à-vis du développement des biofilms de cours d’eau (bassin versant de Decazeville, France). Cryptog Algol 29(3):201–216.

    Google Scholar 

  53. Falasco E, Bona F, Badino G, Hoffmann L, Ector L (2009) Diatom teratological forms and environmental alterations: a review. Hydrobiologia 623(1):1–35

    CAS  Google Scholar 

  54. Falasco E, Bona F, Ginepro M, Hlúbiková D, Hoffmann L, Ector L (2009) Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions. Water SA 35(5):595–606

    CAS  Google Scholar 

  55. Adshead-Simonsen PC, Murray GE, Kushner DJ (1981) Morphological changes in the diatom Tabellaria flocculosa induced by very low concentrations of cadmium. Bull Environ Contam Toxicol 26:745–748

    CAS  Google Scholar 

  56. McFarland BH, Hill BH, Willingham WT (1997) Abnormal Fragilaria spp. (Bacillariophyceae) in streams impacted by mine drainage. J Freshwat Ecol 12(1):141–149

    CAS  Google Scholar 

  57. Debenest T, Silvestre J, Coste M, Delmas F, Pinelli E (2008) Herbicide effects on freshwater benthic diatoms: induction of nucleus alterations and silica cell wall abnormalities. Aquat Toxicol 88(1):88–94

    CAS  Google Scholar 

  58. Parkinson J, Brechet Y, Gordon R (1999) Centric diatom morphogenesis: a model based on a DLA algorithm investigating the potential role of microtubules. Biochim Biophys Acta 1452(1):89–102

    CAS  Google Scholar 

  59. Cordonier A (2006) Formes tératologiques de diatomées benthiques dans le Nant d'Avril, Genève, 2005-2006. Rapport d'analyses. Etat de Genève, Département de l'intérieur, de l'agriculture et de l'environnement, Service de l'écologie de l'eau, p 2

    Google Scholar 

  60. Dickman MD (1998) Benthic marine diatom deformities associated with contaminated sediments in Hong Kong. Environ Int 24(7):749–759

    CAS  Google Scholar 

  61. Morin S, Duong TT, Dabrin A, Coynel A, Herlory O, Baudrimont M, Delmas F, Durrieu G, Schäfer J, Winterton P, Blanc G, Coste M (2008) Long term survey of heavy metal pollution, biofilm contamination and diatom community structure in the Riou-Mort watershed, South West France. Environ Pollut 151(3):532–542

    CAS  Google Scholar 

  62. SECOE (2004) Etude du Nant d'Avril et ses affluents, état 2003 et évolution depuis 1997. Rapport d'état des cours d'eau. Etat de Genève, Département de l'intérieur, de l'agriculture et de l'environnement, p 30

    Google Scholar 

  63. Blanck H, Wängberg SA, Molander S (1988) Pollution-induced community tolerance – a new ecotoxicological tool. In: Cairns J Jr, Pratt JR (eds) Functional testing of aquatic biota for estimating hazards of chemicals. ASTM, Philadelphia, pp 219–230

    Google Scholar 

  64. Gold C, Feurtet-Mazel A, Coste M, Boudou A (2002) Field transfer of periphytic diatom communities to assess short-term structural effects of metals (Cd, Zn) in rivers. Water Res 36(14):3654–3664

    CAS  Google Scholar 

  65. Guasch H, Navarro E, Serra A, Sabater S (2004) Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshwat Biol 49(4):463–473

    CAS  Google Scholar 

  66. Interlandi SJ (2002) Nutrient-toxicant interactions in natural and constructed phytoplankton communities: results of experiments in semi-continuous and batch culture. Aquat Toxicol 61(1–2):35–51

    CAS  Google Scholar 

  67. Ivorra N, Hettelaar J, Kraak MHS, Sabater S, Admiraal W (2002) Responses of biofilms to combined nutrient and metal exposure. Environ Toxicol Chem 21(3):626–632

    CAS  Google Scholar 

  68. Lozano RB, Pratt JR (1994) Interaction of toxicants and communities – the role of nutrients. Environ Toxicol Chem 13(3):361–368

    CAS  Google Scholar 

  69. Admiraal W, Ivorra N, Jonker M, Bremer S, Barranguet C, Guasch H (1999) Distribution of diatom species in a metal polluted Belgian-Dutch River: an experimental analysis. In: Prygiel J, Whitton BA, Bukowska J (eds) Use of algae for monitoring rivers III. Agence de l'Eau Artois-Picardie, Douai, pp 240–244

    Google Scholar 

  70. Barranguet C, Plans M, van der Grinten E, Sinke JJ, Admiraal W (2002) Development of photosynthetic biofilms affected by dissolved and sorbed copper in a eutrophic river. Environ Toxicol Chem 21(9):1955–1965

    CAS  Google Scholar 

  71. Besch WK, Ricard M, Cantin R (1970) Utilisation des diatomées benthiques comme indicateur de pollutions minères dans le bassin de la Miramichi N.W. Fisheries Research Board of Canada, p 72

    Google Scholar 

  72. Blanck H, Admiraal W, Cleven RFMJ, Guasch H, van den Hoop M, Ivorra N, Nystrom B, Paulsson M, Petterson RP, Sabater S, Tubbing GMJ (2003) Variability in zinc tolerance, measured as incorporation of radio-labeled carbon dioxide and thymidine, in periphyton communities sampled from 15 European river stretches. Arch Environ Contam Toxicol 44(1):17–29

    CAS  Google Scholar 

  73. Chanson F, Cordonier A, Nirel P (2005) Essai de mise au point d'un indice diatomique pour évaluer la pollution métallique des cours d'eau du Genevois (Genève, Suisse). In: 24ème Colloque de l'ADLaF, Bordeaux, p 37

    Google Scholar 

  74. Conway HL, Williams SC (1979) Sorption of cadmium and its effects on growth and the utilization of inorganic carbon and phosphorus of two freshwater diatoms. J Fish Res Board Can 36(5):579–586

    CAS  Google Scholar 

  75. Cunningham L, Stark JS, Snape I, McMinn A, Riddle MJ (2003) Effects of metal and petroleum hydrocarbon contamination on benthic diatom communities near Casey Station, Antarctica: an experimental approach. J Phycol 39(3):490–503

    CAS  Google Scholar 

  76. De Jonge M (2007) Respons van aquatische organismen op metaalverontreiniging in natuurlijke waterlopen. Universitaire Instelling Antwerpen, Faculteit Wetenschappen, Department Biologie, p 124

    Google Scholar 

  77. Duong TT, Feurtet-Mazel A, Coste M, Dang DK, Boudou A (2007) Dynamics of diatom colonization process in some rivers influenced by urban pollution (Hanoi, Vietnam). Ecol Indic 7(4):839–851

    Google Scholar 

  78. Duong TT, Morin S, Herlory O, Feurtet-Mazel A, Coste M, Boudou A (2008) Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms. Aquat Toxicol 90(1):19–28

    CAS  Google Scholar 

  79. Ferreira da Silva E, Almeida SFP, Nunes ML, Luís AT, Borg F, Hedlund M, de Sá CM, Patinha C, Teixeira P (2009) Heavy metal pollution downstream the abandoned Coval da Mó mine (Portugal) and associated effects on epilithic diatom communities. Sci Total Environ 407(21):5620–5636

    CAS  Google Scholar 

  80. Feurtet-Mazel A, Gold C, Coste M, Boudou A (2003) Study of periphytic diatom communities exposed to metallic contamination through complementary field and laboratory experiments. J Phys IV 107:467–470

    CAS  Google Scholar 

  81. Fisher NS, Jones GJ, Nelson DM (1981) Effects of copper and zinc on growth, morphology, and metabolism of Asterionella japonica (Cleve). J Exp Mar Biol Ecol 51:37–56

    CAS  Google Scholar 

  82. Gélabert A, Pokrovsky O, Reguant C, Schott J, Boudou A (2006) A surface complexation model for cadmium and lead adsorption onto diatom surface. J Geochem Explor 88:110–113

    Google Scholar 

  83. Genter RB, Cherry DS, Smith EP, Jr JC (1987) Algal periphyton population and community changes from zinc stress in stream mesocosms. Hydrobiologia 153(3):261–275

    CAS  Google Scholar 

  84. Genter RB, Amyot DJ (1994) Freshwater benthic algal population and community changes due to acidity and aluminum-acid mixtures in artificial streams. Environ Toxicol Chem 13(3):369–380

    CAS  Google Scholar 

  85. Genter RB (1995) Benthic algal populations respond to aluminium, acid, and aluminium- acid mixtures in artificial streams. Hydrobiologia 306(1):7–19

    CAS  Google Scholar 

  86. Genter RB, Lehman RM (2000) Metal toxicity inferred from algal population density, heterotrophic substrate use, and fatty acid profile in a small stream. Environ Toxicol Chem 19(4):869–878

    CAS  Google Scholar 

  87. Gold C (1998) Etude expérimentale des effets d'un contaminant métallique – le cadmium – sur les communautés de diatomées périphytiques, au sein de microcosmes plurispécifiques d'eau douce. Univ. Bordeaux I LEESA, p 23

    Google Scholar 

  88. Gold C, Feurtet-Mazel A, Coste M, Boudou A (2003) Effects of cadmium stress on periphytic diatom communities in indoor artificial streams. Freshwat Biol 48:316–328

    CAS  Google Scholar 

  89. Gómez N, Licursi M (2003) Abnormal forms in Pinnularia gibba (Bacillariophyceae) in a polluted lowland stream from Argentina. Nova Hedwigia 77(3–4):389–398

    Google Scholar 

  90. Guasch H, Leira M, Montuelle B, Geiszinger A, Roulier J-L, Tornés E, Serra A (2009) Use of multivariate analyses to investigate the contribution of metal pollution to diatom species composition: search for the most appropriate cases and explanatory variables. Hydrobiolgia 627(1):143–158

    CAS  Google Scholar 

  91. Hirst H, Jüttner I, Ormerod SJ (2002) Comparing the responses of diatoms and macroinvertebrates to metals in upland streams of Wales and Cornwall. Freshwat Biol 47(9):1752–1765

    CAS  Google Scholar 

  92. Ivorra N, Hettelaar J, Tubbing GMJ, Kraak MHS, Sabater S, Admiraal W (1999) Translocation of microbenthic algal assemblages used for in situ analysis of metal pollution in rivers. Arch Environ Contam Toxicol 37(1):19–28

    CAS  Google Scholar 

  93. Ivorra N, Bremer S, Guasch H, Kraak MHS, Admiraal W (2000) Differences in the sensitivity of benthic microalgae to Zn and Cd regarding biofilm development and exposure history. Environ Toxicol Chem 19(5):1332–1339

    CAS  Google Scholar 

  94. Kocev D, Naumoski A, Mitreski K, Krstic S, Dzeroski S (2010) Learning habitat models for the diatom community in Lake Prespa. J Ecol Model 221:330–337

    Google Scholar 

  95. Laviale M (2008) Effet des polluants sur les communautés périphytiques naturelles : Apport des mesures de fluorescence chlorophyllienne en lumière modulée (PAM). Université des Sciences et Technologies de Lille – Lille 1, p 198

    Google Scholar 

  96. Lehmann V, Tubbing GMJ, Admiraal W (1999) Induced metal tolerance in microbenthic communities from three lowland rivers with different metal loads. Arch Environ Contam Toxicol 36(4):384–391

    CAS  Google Scholar 

  97. Lindstrøm E-A, Rørslett B (1991) The effects of heavy metal pollution on periphyton in a Norwegian soft-water river. Verh Internat Verein Limnol 24:2215–2219

    Google Scholar 

  98. Monteiro MT, Oliveira R, Vale C (1995) Metal stress on the plankton communities of Sado River (Portugal). Water Res 29(2):695–701

    CAS  Google Scholar 

  99. Morin S, Coste M, Delmas F (2008) From field studies to laboratory experiments for assessing the influence of metal contamination on relative specific growth rates of periphytic diatoms. In: Brown SE, Welton WC (eds) Heavy metal pollution. Nova Science, New York, pp 137–155

    Google Scholar 

  100. Morin S, Duong TT, Herlory O, Feurtet-Mazel A, Coste M (2008) Cadmium toxicity and bioaccumulation in freshwater biofilms. Arch Environ Contam Toxicol 54(2):173–186

    CAS  Google Scholar 

  101. Nakanishi Y, Sumita M, Yumita K, Yamada T, Honjo T (2004) Heavy-metal pollution and its state in algae in Kakehashi River and Godani River at the foot of Ogoya mine, Ishikawa prefecture. Anal Sci 20(1):73–78

    CAS  Google Scholar 

  102. Navarro E, Guasch H, Sabater S (2002) Use of microbenthic algal communities in ecotoxicological tests for the assessment of water quality: the Ter river case study. J Appl Phycol 14(1):41–48

    Google Scholar 

  103. Nunes ML, Ferreira Da Silva E, De Almeida SFP (2003) Assessment of water quality in the Caima and Mau River basins (Portugal) using geochemical and biological indices. Water Air Soil Pollut 149(1–4):227–250

    CAS  Google Scholar 

  104. Pérès F, Coste M, Ricard M, Boudou A, Ribeyre F (1995) Effets des métaux lourds (Cd, Hg) sur les communautés de diatomées périphytiques développées sur substrats artificiels en microcosmes. Vie Milieu 45(3/4):210–230

    Google Scholar 

  105. Pérès F, Coste M, Ribeyre F, Ricard M, Boudou A (1997) Effects of methylmercury and inorganic mercury on periphytic diatom communities in freshwater indoor microcosms. J Appl Phycol 9(3):215–227

    Google Scholar 

  106. Pistocchi R, Guerrini F, Balboni V, Boni L (1997) Copper toxicity and carbohydrate production in the microalgae Cylindrotheca fusiformis and Gymnodinium sp. Eur J Phycol 32(2):125–132

    Google Scholar 

  107. Pistocchi R, Mormile MA, Guerrini F, Isani G, Boni L (2000) Increased production of extra- and intracellular metal-ligands in phytoplankton exposed to copper and cadmium. J Appl Phycol 12(3–5):469–477

    CAS  Google Scholar 

  108. Pokrovsky OS, Feurtet-Mazel A, Martinez RE, Morin S, Baudrimont M, Duong T, Coste M (2010) Experimental study of cadmium interaction with periphytic biofilms. Appl Geochem 25(3):418–427

    CAS  Google Scholar 

  109. Pomian-Srzednicki I (2006) Relations entre la composition des communautés de diatomées et les concentrations des polluants métalliques dans les cours d'eau genevois, SECOE, Editor: Genève, p 29

    Google Scholar 

  110. Ruggiu D, Luglie A, Cattaneo A, Panzani P (1998) Paleoecological evidence for diatom response to metal pollution in Lake Orta (N. Italy). J Paleolimnol 20(4):333–345

    Google Scholar 

  111. Sabater S (2000) Diatom communities as indicators of environmental stress in the Guadiamar River, S-W. Spain, following a major mine tailings spill. J Appl Phycol 12(2):113–124

    CAS  Google Scholar 

  112. Sanders JG, Riedel GF (1998) Metal accumulation and impacts in phytoplankton. In: Langston W, Bebianno M (eds) Metal metabolism in aquatic environments. Chapman and Hall, London, pp 59–76

    Google Scholar 

  113. Say PJ (1978) Le Riou-Mort, affluent du Lot pollué par les métaux. I. Etude préliminaire de la chimie et des algues benthiques. Annls Limnol 14(1–2):113–131

    CAS  Google Scholar 

  114. Serra A, Corcoll N, Guasch H (2009) Copper accumulation and toxicity in fluvial periphyton: the influence of exposure history. Chemosphere 74(5):633–641

    CAS  Google Scholar 

  115. Serra A, Guasch H, Admiraal W, Van der Geest H, Van Beusekom SAM (2010) Influence of phosphorus on copper sensitivity of fluvial periphyton: the role of chemical, physiological and community-related factors. Ecotoxicology 19(4):770–780

    CAS  Google Scholar 

  116. Shehata SA, Lasheen MR, Kobbia IA, Ali GH (1999) Toxic effect of certain metals mixture on some physiological and morphological characteristics of freshwater algae. Water Air Soil Pollut 110(1–2):119–135

    CAS  Google Scholar 

  117. Szabó K, Kiss KT, Taba G, Ács É (2005) Epiphytic diatoms of the Tisza River, Kisköre Reservoir and some oxbows of the Tisza River after the cyanide and heavy metal pollution in 2000. Acta Bot Croat 64(1):1–46

    Google Scholar 

  118. Takamura N, Kasai F, Watanabe MM (1989) Effects of Cu, Cd and Zn on photosynthesis of freshwater benthic algae. J Appl Phycol 1(1):39–52

    CAS  Google Scholar 

  119. Tapia PM (2008) Diatoms as bioindicators of pollution in the Mantaro River, Central Andes, Peru. Int J Environ Health 2(1):82–91

    Google Scholar 

  120. Tien CJ (2004) Some aspects of water quality in a polluted lowland river in relation to the intracellular chemical levels in planktonic and epilithic diatoms. Water Res 38(7):1779–1790

    CAS  Google Scholar 

  121. Tien CJ, Sigee DC, White KN (2005) Copper adsorption kinetics of cultured algal cells and freshwater phytoplankton with emphasis on cell surface characteristics. J Appl Phycol 17(5):379–389

    CAS  Google Scholar 

  122. van Dam H, Mertens A (1990) A comparison of recent epilithic diatom assemblages from the industrially acidified and copper polluted lake Orta (Northern Italy) with old literature data. Diatom Res 5(1):1–13

    Google Scholar 

  123. Verb RG, Vis ML (2005) Periphyton assemblages as bioindicators of mine-drainage in unglaciated western allegheny plateau lotic systems. Water Air Soil Pollut 161(1–4):227–265

    CAS  Google Scholar 

  124. Whitton BA (1975) River ecology. B.S. Publications, Oxford, 725

    Google Scholar 

  125. Whitton BA (2003) Use of plants for monitoring heavy metals in freshwaters. In: Ambasht RS, Ambasht NK (eds) Modern trends in applied aquatic ecology. Kluwer, New-York, pp 43–63

    Google Scholar 

  126. Morin S, Pesce S, Tlili A, Coste M, Montuelle B (2010) Recovery potential of periphytic communities in a river impacted by a vineyard watershed. Ecol Indic 10(2):419–426

    CAS  Google Scholar 

  127. Rimet F, Ector L, Cauchie H-M, Hoffmann L (2009) Changes in diatom-dominated biofilms during simulated improvements in water quality: implications for diatom-based monitoring in rivers. Eur J Phycol 44(4):567–577

    CAS  Google Scholar 

  128. Meharg AA (1994) Integrated tolerance mechanisms – constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant Cell Environ 17(9):989–993

    CAS  Google Scholar 

  129. Serra A, Guasch H (2009) Effects of chronic copper exposure on fluvial systems: linking structural and physiological changes of fluvial biofilms with the in-stream copper retention. Sci Total Environ 407(19):5274–5282

    CAS  Google Scholar 

  130. da Costa Santos JA (2010) Cadmium effects in Nitzschia palea frustule proteins (Efeitos do cádmio nas proteínas da frústula de Nitzschia palea). Universidade de Aveiro, Departamento de Biologia, p 35

    Google Scholar 

  131. De Filippis LF, Pallaghy CK (1994) Heavy metals: sources and biological effects. In: Rai LC, Gaur JP, Soeder CJ (eds) Algae and water pollution. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, pp 31–77

    Google Scholar 

  132. Gaur JP, Rai LC (2001) Heavy metal tolerance in algae. In: Rai LC, Gaur JP (eds) Algal adaptation to environmental stresses: physiological, biochemical and molecular mechanisms. Springer, Berlin, pp 363–388

    Google Scholar 

  133. Ahner BA, Morel FMM (1995) Phytochelatin production in marine algae. 2. Induction by various metals. Limnol Oceanogr 40(4):658–665

    CAS  Google Scholar 

  134. Le Faucheur S, Behra R, Sigg L (2005) Thiol and metal contents in periphyton exposed to elevated copper and zinc concentrations: A field and microcosm study. Environ Sci Technol 39(20):8099–8107

    Google Scholar 

  135. Wong SL, Wainwright JF, Pimenta J (1995) Quantification of total and metal toxicity in wastewater using algal bioassays. Aquat Toxicol 31(1):57–75

    CAS  Google Scholar 

  136. Gonzalezdavila M (1995) The role of phytoplankton cells on the control of heavy-metal concentration in seawater. Mar Chem 48(3–4):215–236

    CAS  Google Scholar 

  137. Scarano G, Morelli E (2002) Characterization of cadmium- and lead- phytochelatin complexes formed in a marine microalga in response to metal exposure. Biometals 15(2):145–151

    CAS  Google Scholar 

  138. Rijstenbil JW, Sandee A, Vandrie J, Wijnholds JA (1994) Interaction of toxic trace-metals and mechanisms of detoxification in the planktonic diatoms Ditylum brightwellii and Thalassiosira pseudonana. FEMS Microbiol Rev 14(4):387–396

    CAS  Google Scholar 

  139. Wu JT, Chang SC, Chen KS (1995) Enhancement of intracellular proline level in cells of Anacystis nidulans (Cyanobacteria) exposed to deleterious concentrations of copper. J Phycol 31(3):376–379

    CAS  Google Scholar 

  140. Wu JT, Hsieh MT, Kow LC (1998) Role of proline accumulation in response to toxic copper in Chlorella sp. (Chlorophyceae) cells. J Phycol 34(1):113–117

    Google Scholar 

  141. Ahner BA, Wei LP, Oleson JR, Ogura N (2002) Glutathione and other low molecular weight thiols in marine phytoplankton under metal stress. Mar Ecol Prog Ser 232:93–103

    CAS  Google Scholar 

  142. Rijstenbil JW, Derksen JWM, Gerringa LJA, Poortvliet TCW, Sandee A, Mvd B, Jv D, Wijnholds JA (1994) Oxidative stress induced by copper: defense and damage in the marine planktonic diatom Ditylum brightwellii, grown in continuous cultures with high and low zinc levels. Mar Biol 119:583–590

    CAS  Google Scholar 

  143. Rijstenbil JW, Gerringa LJA (2002) Interactions of algal ligands, metal complexation and availability, and cell responses of the diatom Ditylum brightwellii with a gradual increase in copper. Aquat Toxicol 56(2):115–131

    CAS  Google Scholar 

  144. Pinto E, Sigaud-Kutner TCS, Leitao MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39(6):1008–1018

    CAS  Google Scholar 

  145. Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69(4):2313–2320

    CAS  Google Scholar 

  146. Lee JG, Ahner BA, Morel FMM (1996) Export of cadmium and phytochelatin by the marine diatom Thalassiosira weissflogii. Environ Sci Technol 30(6):1814–1821

    CAS  Google Scholar 

  147. Rosen BP (1996) Bacterial resistance to heavy metals and metalloids. J Biol Inorg Chem 1(4):273–277

    CAS  Google Scholar 

  148. Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Continent Shelf Res 20(10–11):1257–1273

    Google Scholar 

  149. Revsbech NP, Nielsen LP, Christensen PB, Sørensen J (1988) Combined oxygen and nitrous oxide microsensors for denitrification studies. Appl Environ Microbiol 54(9):2245–2249

    CAS  Google Scholar 

  150. Teissier S, Torre M (2002) Simultaneous assessment of nitrification and denitrification on freshwater epilithic biofilms by acetylene block method. Water Res 36(15):3803–3811

    CAS  Google Scholar 

  151. Sabater S, Guasch H, Ricart M, Romaní A, Vidal G, Klünder C, Schmitt-Jansen M (2007) Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Anal BioAnal Chem 387(4):1425–1434

    CAS  Google Scholar 

  152. Barranguet C, van den Ende FP, Rutgers M, Breure AM, Greijdanus M, Sinke JJ, Admiraal W (2003) Copper-induced modifications of the trophic relations in riverine algal-bacterial biofilms. Environ Toxicol Chem 22(6):1340–1349

    CAS  Google Scholar 

  153. Asconit Consultants (2007) Methodological study for biological monitoring of surface water quality in the Pearl River Basin. In: Report to the Pearl River Water Resources Commission (Guangzhou, China), p 159

    Google Scholar 

  154. Blanco S, Bécares E (2010) Are biotic indices sensitive to river toxicants? A comparison of metrics based on diatoms and macro-invertebrates. Chemosphere 79(1):18–25

    CAS  Google Scholar 

  155. Pérès F (1999) Mise en évidence des effets toxiques des métaux lourds sur les diatomées par l'étude des formes tératogènes. Rapport d'étude, Agence de l'Eau Artois Picardie, p 24

    Google Scholar 

  156. Coste M (1999) Atlas des diatomées pour la mise en œuvre de l'Indice Biologique Diatomées (IBD). Agences de l'Eau – Cemagref QEBX Bordeaux, p 130

    Google Scholar 

  157. Krammer K, Lange-Bertalot H (1986–1991) Bacillariophyceae 1. Teil: Naviculaceae. 876 p.; 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, 596 p.; 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, 576 p.; 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. 437 p. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, vol Band 2/1-4. G. Fischer, Stuttgart

    Google Scholar 

  158. Krammer K (2002) Cymbella. In: Lange-Bertalot H (ed) Diatoms of Europe, vol 3. A.R.G. Gantner Verlag, Ruggell, p 584

    Google Scholar 

  159. Krammer K (2003) Cymbopleura, Delicata, Navicymbula, Gomphocymbula, Gomphocymbellopsis, Afrocymbella. In: Lange-Bertalot H (ed) Diatoms of Europe: Diatoms of the European inland waters and comparable habitats, vol 4. A.R.G.Gantner Verlag K.G, Ruggell, p 530

    Google Scholar 

  160. Lange-Bertalot H, Metzeltin D (1996) Indicators of oligotrophy. 800 taxa representative of three ecologically distinct lakes types. In: Lange-Bertalot H (ed) Carbonated buffered – Oligodystrophic – Weakly buffered soft water. Iconographia Diatomologica – Annotated diatom micrographs, vol 2. Koeltz Scientific Books, Königstein, p 390

    Google Scholar 

  161. Lange-Bertalot H (2001) Navicula sensu stricto 10 genera separated from Navicula sensu lato, Frustulia. In: Lange-Bertalot H (ed) Diatoms of Europe: diatoms of the European inland waters and comparable habitats. A.R.G. Gantner Verlag K.G, Ruggell, p 526

    Google Scholar 

  162. Lavoie I, Hamilton PB, Campeau S, Grenier M, Dillon PJ (2008) Guide d'identification des diatomées des rivières de l’est du Canada, ed. Presses de l’Université du Québec (PUQ)

    Google Scholar 

  163. Clements WH, Carlisle DM, Lazorchak JM, Johnson PC (2000) Heavy metals structure benthic communities in Colorado mountain streams. Ecol Appl 10(2):626–638

    Google Scholar 

  164. Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35(2):403–424

    Google Scholar 

  165. Hoagland KD, Roemer SC, Rosowski JR (1982) Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). Am J Bot 69(2):188–213

    Google Scholar 

  166. Hudon C, Bourget E (1983) The effect of light on the vertical structure of epibenthic diatom communities. Bot Mar 26:317–330

    Google Scholar 

  167. Hudon C, Duthie HC, Paul B (1987) Physiological modifications related to density increase in periphytic assemblages. J Phycol 23(3):393–399

    Google Scholar 

  168. Katoh K (1992) Correlation between cell density and dominant growth form of epilithic diatom assemblages. Diatom Res 7:77–86

    Google Scholar 

  169. Kelly MG, Bennion H, Cox EJ, Goldsmith B, Jamieson J, Juggins S, Mann DG, Telford RJ (2005) Common freshwater diatoms of Britain and Ireland: an interactive key. Environment Agency, Bristol

    Google Scholar 

  170. Tuji A (2000) Observation of developmental processes in loosely attached diatom (Bacillariophyceae) communities. Phycol Res 48(2):75–84

    Google Scholar 

  171. Gómez N, Sierra MV, Cortelezzi A, Rodrigues Capítulo A (2008) Effects of discharges from the textile industry on the biotic integrity of benthic assemblages. Ecotoxicol Environ Saf 69(3):472–479

    Google Scholar 

  172. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana, IL, p 117

    Google Scholar 

  173. Estes A, Dute RR (1994) Valve abnormalities in diatom clones maintained in long-term culture. Diatom Res 9(2):249–258

    Google Scholar 

  174. Granetti B (1978) Struttura di alcune valve teratologiche di Navicula gallica (W. Smith) Van Heurck. Giornale botanico italiano 112:1–12

    Google Scholar 

  175. Townsend CR, Dolédec S, Scarsbrook MR (1997) Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshwat Biol 37(2):367–387

    Google Scholar 

  176. Potapova M, Hamilton PB (2007) Morphological and ecological variation within the Achnanthidium minutissimum (Bacillariophyceae) species complex. J Phycol 43(3):561–575

    Google Scholar 

  177. Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7(1):75–83

    Google Scholar 

  178. Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Google Scholar 

  179. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366

    Google Scholar 

Download references

Acknowledgements

The data used in this paper are based on the results of studies partially founded by the following programs: ANR ReSyst 08-CES-2009, EC2CO-CYTRIX (2008–2009), CNRS ACI ECCO-ECODYN (2003–006), Cemagref “PestExpo”, ESPOIR (French Ministry of Foreign Affairs), FASEP n°694, MODELKEY 511237-2 GOCE and KEYBIOEFFECTS MRTN-CT-2006-035695. The authors also acknowledge the Agence de l’eau Artois Picardie, the Agència Catalana de l’Aigua, the Duero Basin Authority (Confederación Hidrográfica del Duero, CHD), the Natural Sciences and Engineering Research Council of Canada (NSERC), the Direction Générale de l’Eau (Département de l’Intérieur et de la Mobilité, Geneva, Switzerland), the Pearl River Water Resources Commission (PRWRC), Eric Baye (Asconit Consultants) and Paul B. Hamilton (Canadian Museum of Nature). Thanks to Marius Bottin and Elisa Falasco for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soizic Morin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morin, S. et al. (2012). Consistency in Diatom Response to Metal-Contaminated Environments. In: Guasch, H., Ginebreda, A., Geiszinger, A. (eds) Emerging and Priority Pollutants in Rivers. The Handbook of Environmental Chemistry(), vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25722-3_5

Download citation

Publish with us

Policies and ethics