Skip to main content

Bioavailability of Organic Contaminants in Freshwater Environments

  • Chapter
  • First Online:
Emerging and Priority Pollutants in Rivers

Abstract

It has been well established that in many cases total concentration of a chemical in the environment is not the best indicator for the potential threats that the chemical may cause. The term bioavailability describes the fact that only a fraction of a chemical in the environment is available for uptake by organisms, which then determines possible biological effects. Uptake of contaminants is a complex interplay among biological, chemical, and physical factors and processes. Properties of chemicals, environmental conditions, and characteristics of the organisms and the interaction among these ultimately dictate the exposure. This chapter represents the important factors determining bioavailability of organic contaminants in both the water phase and sediment in freshwater systems. In addition, we introduce techniques to measure bioavailability by passive sampling and present modeling tools for estimations. In the end, we offer a short insight about bioavailability in risk management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Semple KT, Doick KJ, Jones KC et al (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228A–231A

    CAS  Google Scholar 

  2. Ehlers GAC, Loibner AP (2006) Linking organic pollutant (bio)availability with geosorbent properties and biomimetic methodology: a review of geosorbent characterisation and (bio)availability prediction. Environ Pollut 141:494–512

    CAS  Google Scholar 

  3. Kuster M, Lopez MJ, de Alda MJL et al (2004) Analysis and distribution of estrogens and progestogens in sewage sludge, soils and sediments. Trac Trends Anal Chem 23:790–798

    CAS  Google Scholar 

  4. Chiou CT, Peters LJ, Freed VH (1979) A physical concept of soil-water equilibria for nonionic organic compounds. Science 206:831–832

    CAS  Google Scholar 

  5. Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13:241–248

    CAS  Google Scholar 

  6. Cuypers C, Grotenhuis T, Nierop KGJ et al (2002) Amorphous and condensed organic matter domains: the effect of persulfate oxidation on the composition of soil/sediment organic matter. Chemosphere 48:919–931

    CAS  Google Scholar 

  7. Chiou CT, Kile DE, Rutherford DW et al (2000) Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: potential sources of the sorption nonlinearity. Environ Sci Technol 34:1254–1258

    CAS  Google Scholar 

  8. Weber WJ, McGinley PM, Katz LE (1992) A distributed reactivity model for sorption by soils and sediments. Conceptual basis and equilibrium assessments. Environ Sci Technol 26:1955–1962

    CAS  Google Scholar 

  9. Weber WJ, Huang WL, Leboeuf EJ (1999) Geosorbent organic matter and its relationship to the binding and sequestration of organic contaminants. Colloids Surf A Physicochem Eng Aspects 151:167–179

    CAS  Google Scholar 

  10. Xing B, Pignatello JJ (1997) Dual-mode sorption of low-polarity compounds in glassy poly (vinyl chloride) and soil organic matter. Environ Sci Technol 31:792–799

    CAS  Google Scholar 

  11. Pehkonen S, You J, Akkanen J et al (2010) Influence of black carbon and chemical planarity on bioavailability of sediment-associated contaminants. Environ Toxicol Chem 29:1976–1983

    CAS  Google Scholar 

  12. Huang WL, Ping PA, Yu ZQ et al (2003) Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Appl Geochem 18:955–972

    CAS  Google Scholar 

  13. Cornelissen G, Gustafsson O, Bucheli TD et al (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39:6881–6895

    CAS  Google Scholar 

  14. Pan B, Ghosh S, Xing BS (2008) Dissolved organic matter conformation and its interaction with pyrene as affected by water chemistry and concentration. Environ Sci Technol 42:1594–1599

    CAS  Google Scholar 

  15. Chin Y-P, Aiken GR, Danielsen KM (1997) Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity. Environ Sci Technol 31:1630–1635

    CAS  Google Scholar 

  16. Kopinke FD, Georgi A, MacKenzie K (2001) Sorption of pyrene to dissolved humic substances and related model polymers. 1. Structure–property correlation. Environ Sci Technol 35:2536–2542

    CAS  Google Scholar 

  17. Hur J, Schlautman MA (2003) Using selected operational descriptors to examine the heterogeneity within a bulk humic substance. Environ Sci Technol 37:4020–4020

    CAS  Google Scholar 

  18. Hur J, Lee DH, Shin HS (2009) Comparison of the structural, spectroscopic and phenanthrene binding characteristics of humic acids from soils and lake sediments. Org Geochem 40:1091–1099

    CAS  Google Scholar 

  19. Huang W, Weber WJ Jr (1997) A distributed reactivity model for sorption by soil and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains. Environ Sci Technol 31:2562–2569

    CAS  Google Scholar 

  20. Hur J, Schlautman MA (2004) Influence of humic substance adsorptive fractionation on pyrene partitioning to dissolved and mineral-associated humic substances. Environ Sci Technol 38:5871–5877

    CAS  Google Scholar 

  21. Kang SH, Xing BS (2005) Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environ Sci Technol 39:134–140

    CAS  Google Scholar 

  22. Stevenson FJ (1994) Humus chemistry: genesis, composition, reaction. Wiley, New Jersey

    Google Scholar 

  23. Schulten HR, Plage B, Schnitzer M (1991) A chemical-structure for humic substances. Naturwissenschaften 78:311–312

    CAS  Google Scholar 

  24. Lawrence MAM, Davies NA, Edwards PA et al (2000) Can adsorption isotherms predict sediment bioavailability? Chemosphere 41:1091–1100

    CAS  Google Scholar 

  25. Xing BS (2001) Sorption of anthropogenic organic compounds by soil organic matter: a mechanistic consideration. Can J Soil Sci 81:317–323

    CAS  Google Scholar 

  26. Pan B, Xing BS, Liu WX et al (2006) Distribution of sorbed phenanthrene and pyrene in different humic fractions of soils and importance of humin. Environ Pollut 143:24–33

    CAS  Google Scholar 

  27. Koelmans AA, Jonker MTO, Cornelissen G et al (2006) Black carbon: the reverse of its dark side. Chemosphere 63:365–377

    CAS  Google Scholar 

  28. Zhu DQ, Hyun SH, Pignatello JJ et al (2004) Evidence for pi-pi electron donor-acceptor interactions between pi-donor aromatic compounds and pi-acceptor sites in soil organic matter through pH effects on sorption. Environ Sci Technol 38:4361–4368

    CAS  Google Scholar 

  29. Jonker MTO, Koelmans AA (2002) Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment mechanistic considerations. Environ Sci Technol 36:3725–3734

    CAS  Google Scholar 

  30. Pignatello JJ, Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30:1–11

    CAS  Google Scholar 

  31. Sanchez-Garcia L, Cato I, Gustafsson O (2010) Evaluation of the influence of black carbon on the distribution of PAHs in sediments from along the entire Swedish continental shelf. Mar Chem 119:44–51

    CAS  Google Scholar 

  32. Huang W, Weber WJ Jr (1998) A distributed reactivity model for sorption by soils and sediments.11. Slow concentration-dependent sorption rates. Environ Sci Technol 32:3549–3555

    CAS  Google Scholar 

  33. Luthy RG, Aiken GR, Brusseau ML et al (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31:3341–3347

    CAS  Google Scholar 

  34. Leppänen MT, Landrum PF, Kukkonen JVK et al (2003) Investigating the role of desorption on the bioavailability of sediment associated 3,4,3',4'-tetrachlorobiphenyl in benthic invertebrates. Environ Toxicol Chem 22:2861–2871

    Google Scholar 

  35. Drori Y, Aizenshtat Z, Chefetz B (2005) Sorption–desorption behavior of atrazine in soils irrigated with reclaimed wastewater. Soil Sci 69:1703–1710

    CAS  Google Scholar 

  36. Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265

    CAS  Google Scholar 

  37. Nam K, Alexander M (1998) Role of nanoporosity and hydrophobicity in sequestration and bioavailability: tests with model solids. Environ Sci Technol 32:71–74

    CAS  Google Scholar 

  38. Weber WJ, Kim SH, Johnson MD (2002) Distributed reactivity model for sorption by soils and sediments. 15. High-concentration co-contaminant effects on phenanthrene sorption and Desorption. Environ Sci Technol 36:3625–3634

    CAS  Google Scholar 

  39. Lesan HM, Bhandari A (2003) Atrazine sorption on surface soils: time-dependent phase distribution and apparent desorption hysteresis. Water Res 37:1644–1654

    CAS  Google Scholar 

  40. Lu YF, Pignatello JJ (2004) Sorption of apolar aromatic compounds to soil humic acid particles affected by aluminum(III) ion cross-linking. J Environ Qual 33:1314–1321

    CAS  Google Scholar 

  41. Ju D, Young TM (2005) The influence of natural organic matter rigidity on the sorption, desorption, and competitive displacement rates of 1,2-dichlorobenzene. Environ Sci Technol 39:7956–7963

    CAS  Google Scholar 

  42. Kraaij RH, Ciarell S, Tolls J et al (2001) Bioavailability of lab-contaminated and native polycyclic aromatic hydrocarbons to the amphpod Corophium volutator relates to chemical desorption. Environ Toxicol Chem 20:1716–1724

    CAS  Google Scholar 

  43. Leppänen MT, Kukkonen JVK (2006) Evaluating the role of desorption in bioavailability of sediment associated contaminants using oligochaetes, semipermeable membrane devices and Tenax extraction. Environ Pollut 140:150–163

    Google Scholar 

  44. Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley, New Jersey

    Google Scholar 

  45. Van Noort PCM, Jonker MTO, Koelmans AA (2004) Modeling maximum adsorption capacities of soot and soot-like materials for PAHs and PCBs. Environ Sci Technol 38:3305–3309

    Google Scholar 

  46. Thorsen WA, Cope WG, Shea D (2004) Bioavailability of PAHs: effects of soot carbon and PAH source. Environ Sci Technol 38:2029–2037

    CAS  Google Scholar 

  47. Moermond CTA, Zwolsman JJG, Koelmans AA (2005) Black carbon and ecological factors affect in situ biota to sediment accumulation factors for hydrophobic organic compounds in flood plain lakes. Environ Sci Technol 39:3101–3109

    CAS  Google Scholar 

  48. Neff JM, Stout SA, Gunster DG (2005) Ecological risk assesment of polycyclic aromatic hydrocarbons in sediments: identifying sources and ecological hazard. Integr Environ Assess Manag 1:22–33

    CAS  Google Scholar 

  49. Luo L, Lou L, Cui X et al (2011) Sorption and desorption of pentachlorophenol to black carbon of three different origins. J Hazard Mater 185:639–646

    CAS  Google Scholar 

  50. Åkerblom N, Goedkoop W, Nilsson T et al (2010) Particle-specific sorption/desorption properties determine test compound fate and bioavailability in toxicity tests with chironomus riparius-high-resolution studies with lindane. Environ Toxicol Chem 29:1520–1528

    Google Scholar 

  51. Cui XY, Hunter W, Yang Y et al (2010) Bioavailability of sorbed phenanthrene and permethrin in sediments to Chironomus tentans. Aquat Toxicol 98:83–90

    CAS  Google Scholar 

  52. Sijm D, Kraaij R, Belfroid A (2000) Bioavailability in soil or sediment: exposure of different organisms and approaches to study it. Environ Pollut 108:113–119

    CAS  Google Scholar 

  53. Mayer LM, Weston DP, Bock MJ (2001) Benzo[a]pyrene and zinc solubilization by digestive fluids of benthic invertebrates – a cross-phyletic study. Environ Toxicol Chem 20:1890–1900

    CAS  Google Scholar 

  54. Gobas FAPC, Zhang X, Wells R (1993) Gastrointestinal magnification – the mechanism of biomagnification and food-chain accumulation of organic-chemicals. Environ Sci Technol 27:2855–2863

    CAS  Google Scholar 

  55. Kortelainen P (1999) Occurence of humic waters. In: Keskitalo J, Eloranta P (eds) Limnology of humic waters. Backhuys, Leiden

    Google Scholar 

  56. Thurman EM (1985) Organic geochemistry of natural waters. Martinus Nijoff/ Dr. W Junk, Dordrecht

    Google Scholar 

  57. Kronberg L (1999) Content of humic substances in freshwater. In: Keskitalo J, Eloranta P (eds) Limnology of humic waters. Backhuys, Leiden

    Google Scholar 

  58. Leenheer JA, Croue JP (2003) Characterizing aquatic dissolved organic matter. Environ Sci Technol 37:18A–26A

    CAS  Google Scholar 

  59. Lam B, Baer A, Alaee M et al (2007) Major structural components in freshwater dissolved organic matter. Environ Sci Technol 41:8240–8247

    CAS  Google Scholar 

  60. Ma HZ, Allen HE, Yin YJ (2001) Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent. Water Res 35:985–996

    CAS  Google Scholar 

  61. Pernet-Coudrier B, Clouzot L, Varrault G et al (2008) Dissolved organic matter from treated effluent of a major wastewater treatment plant: characterization and influence on copper toxicity. Chemosphere 73:593–599

    CAS  Google Scholar 

  62. Gustafsson Ö, Gschwend PM (1997) Aquatic colloids: concepts, definitions, and current challenges. Limnol Oceanogr 42:519–528

    CAS  Google Scholar 

  63. Akkanen J, Kukkonen JVK (2003) Measuring the bioavailability of two hydrophobic organic compounds in the presence of dissolved organic matter. Environ Toxicol Chem 22:518–524

    CAS  Google Scholar 

  64. Ohlenbusch G, Kumke MU, Frimmel FH (2000) Sorption of phenols to dissolved organic matter investigated by solid phase microextraction. Sci Total Environ 253:63–74

    CAS  Google Scholar 

  65. Burkhard LP (2000) Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals. Environ Sci Technol 34:4663–4668

    CAS  Google Scholar 

  66. Kukkonen J, McCarthy JF, Oikari A (1990) Effects of XAD-8 fractions of dissolved organic carbon on the sorption and bioavailability of organic micropollutants. Arch Environ Contam Toxicol 19:551–557

    CAS  Google Scholar 

  67. Kukkonen J, Oikari A (1991) Bioavailability of organic pollutants in boreal waters with varying levels of dissolved organic material. Water Res 25:455–463

    CAS  Google Scholar 

  68. Cho H-H, Park J-W, Liu CCK (2002) Effect of molecular structures on the solubility enhancement of hydrophobic organic compounds by environmental amphiphiles. Environ Toxicol Chem 21:999–1003

    CAS  Google Scholar 

  69. Akkanen J, Vogt RD, Kukkonen JVK (2004) Essential characteristics of natural dissolved organic matter affecting the sorption of hydrophobic organic contaminants. Aquatic Sci 66:171–177

    CAS  Google Scholar 

  70. Haftka JJH, Govers HAJ, Parsons JR (2010) Influence of temperature and origin of dissolved organic matter on the partitioning behavior of polycyclic aromatic hydrocarbons. Environ Sci Pollut Res 17:1070–1079

    CAS  Google Scholar 

  71. Akkanen J, Tuikka A, Kukkonen JVK (2005) Comparative sorption and desorption of benzo[a]pyrene nad 3,4,3',4'-tetrachlorobiphenyl in natural lake water containing dissolved organic matter. Environ Sci Technol 39:7529–7534

    CAS  Google Scholar 

  72. Uhle ME, Chin Y-P, Aiken GR et al (1999) Binding of polychlorinated biphenyls to aquatic humic substances: the role of substrate and sorbate properties on partitioning. Environ Sci Technol 33:2715–2718

    CAS  Google Scholar 

  73. ter Laak TL, Van Eijkeren JCH, Busser FJM et al (2009) Facilitated transport of polychlorinated biphenyls and polybrominated diphenyl ethers by dissolved organic matter. Environ Sci Technol 43:1379–1385

    Google Scholar 

  74. Kuivikko M, Sorsa K, Kukkonen JVK et al (2010) Partitioning of tetra- and pentabromo diphenyl ether and benzo[a]pyrene among water and dissolved and particulate organic carbon along a salinity gradient in coastal waters. Environ Toxicol Chem 29:2443–2449

    CAS  Google Scholar 

  75. Yang WC, Spurlock F, Liu WP et al (2006) Effects of dissolved organic matter on permethrin bioavailability to Daphnia species. J Agric Food Chem 54:3967–3972

    CAS  Google Scholar 

  76. Yang WC, Hunter W, Spurlock F et al (2007) Bioavailability of permethrin and cyfluthrin in surface waters with low levels of dissolved organic matter. J Environ Qual 36:1678–1685

    CAS  Google Scholar 

  77. Kukkonen J (1991) Effects of pH and natural humic substances on the accumulation of organic pollutants in two freshwater invertebrates. In: Allard B, Borén H, Grimvall A (eds) Lecture notes in earth sciences: humic substances in the aquatic and terrestrial environment. Springer, Berlin

    Google Scholar 

  78. De Paolis F, Kukkonen J (1997) Binding of organic pollutants to humic and fulvic acids: influence of pH and the structure of humic material. Chemosphere 34:1693–1704

    Google Scholar 

  79. Haitzer M, Akkanen J, Steinberg C et al (2001) No enhancement in bioconcentration of organic contaminants by low levels of DOM. Chemosphere 44:165–171

    CAS  Google Scholar 

  80. Akkanen J, Penttinen S, Haitzer M, Kukkonen JVK (2001) Bioavailability of atrazine, pyrene and benzo[a]pyrene in European river waters. Chemosphere 45:453–462

    CAS  Google Scholar 

  81. Wiegand C, Pehkonen S, Akkanen J et al (2007) Bioaccumulation of paraquat by Lumbriculus variegatus in the presence of dissolved natural organic matter and impact on energy costs, biotransformation and antioxidative enzymes. Chemosphere 66:558–566

    CAS  Google Scholar 

  82. Kim HJ, Lee DS, Kwon JH (2010) Sorption of benzimidazole anthelmintics to dissolved organic matter surrogates and sewage sludge. Chemosphere 80:256–262

    CAS  Google Scholar 

  83. Maoz A, Chefetz B (2010) Sorption of the pharmaceuticals carbamazepine and naproxen to dissolved organic matter: role of structural fractions. Water Res 44:981–989

    CAS  Google Scholar 

  84. Landrum PF, Reinhold MD, Nihart SR et al (1985) Predicting the bioavailability of organic xenobiotics to Pontroreia hoyi in the presence of humic and fulvic materials and natural dissolved organic matter. Environ Toxicol Chem 4:459–467

    CAS  Google Scholar 

  85. Kukkonen J, Oikari A, Johnsen S et al (1989) Effects of humus concentrations on benzo[a]pyrene accumulation from water to Daphnia magna: comparison of natural waters and standard preparations. Sci Total Environ 79:197–207

    CAS  Google Scholar 

  86. Day KE (1991) Effects of dissolved organic carbon on accumulation and acute toxicity of fenvalerate, deltamethrin and cyhalothrin to Daphnia Magna (Straus). Environ Toxicol Chem 10:91–101

    CAS  Google Scholar 

  87. Haitzer M, Abbt-Braun G, Traunspurger W et al (1999) Effect of humic substances on the bioconcentration of polycyclic aromatic hydrocarbons: correlations with spectroscopic and chemical properties of humic substances. Environ Toxicol Chem 18:2782–2788

    CAS  Google Scholar 

  88. Gourlay C, Tusseau-Vuillemin MH, Garric J et al (2003) Effect of dissolved organic matter of various origins and biodegradabilities on the bioaccumulation of polycyclic aromatic hydrocarbons in Daphnia magna. Environ Toxicol Chem 22:1288–1294

    CAS  Google Scholar 

  89. Gourlay C, Tusseau-Vuillemin MH, Mouchel JM et al (2005) The ability of dissolved organic matter (DOM) to influence benzo[a]pyrene bioavailability increases with DOM biodegradation. Ecotoxicol Environ Saf 61:74–82

    CAS  Google Scholar 

  90. Kukkonen J (1991) Effects of lignin and chlorolignin in pulp mill effluents on the binding and bioavailability of hydrophobic organic pollutants. Water Res 26:1523–1532

    Google Scholar 

  91. Servos MR, Muir DCG, Webster GRB (1989) The effect of dissolved organic-matter on the bioavailability of polychlorinated dibenzo-para-dioxins. Aquat Toxicol 14:169–184

    CAS  Google Scholar 

  92. Traina SJ, Mcavoy DC, Versteeg DJ (1996) Association of linear alkylbenzenesulfonates with dissolved humic substances and its effect on bioavailability. Environ Sci Technol 30:1300–1309

    CAS  Google Scholar 

  93. Haftka JJH, Parsons JR, Govers HAJ et al (2008) Enhanced kinetics of solid-phase microextraction and biodegradation of polycyclic aromatic hydrocarbons in the presence of dissolved organic matter. Environ Toxicol Chem 27:1526–1532

    CAS  Google Scholar 

  94. Smith KEC, Thullner M, Wick LY et al (2009) Sorption to humic acids enhances polycyclic aromatic hydrocarbon biodegradation. Environ Sci Technol 43:7205–7211

    CAS  Google Scholar 

  95. Mayer P, Karlson U, Christensen PS et al (2005) Quantifying the effect of medium composition on the diffusive mass transfer of hydrophobic organic chemicals through unstirred boundary layers. Environ Sci Technol 39:6123–6129

    CAS  Google Scholar 

  96. Mayer P, Fernqvist MM, Christensen PS et al (2007) Enhanced diffusion of polycyclic aromatic hydrocarhons in artificial and natural aqueous solutions. Environ Sci Technol 41:6148–6155

    CAS  Google Scholar 

  97. ter Laak TL, ter Bekke MA, Hermens JLM (2009) Dissolved organic matter enhances transport of PAHs to aquatic organisms. Environ Sci Technol 43:7212–7217

    Google Scholar 

  98. Ghosh K, Schnitzer M (1980) Macromolecular structures of humic substances. Soil Sci 129:266–276

    CAS  Google Scholar 

  99. Aho J, Lehto O (1984) Effect of ionic strength on elution of aquatic humus in gel filtration chromatography. Arch Hydrobiol 101:21–38

    CAS  Google Scholar 

  100. Tsutsuki K, Kuwatsuka S (1984) Molecular size distribution of humic acids as affected by the ionic strength and the degree of humification. Soil Sci Plant Nutr 30:151–162

    CAS  Google Scholar 

  101. Engebretson RR, von Wandruszka R (1994) Microorganization in dissolved humic acids. Environ Sci Technol 28:1934–1941

    CAS  Google Scholar 

  102. Ephraim JH, Pettersson C, Nordén M, Allard B (1995) Potentiometric titrations of humic substances: do ionic strength effects depended on the molecular weight? Environ Sci Technol 29:622–628

    CAS  Google Scholar 

  103. Myneni SCB, Brown JT, Martinez GA, Meyer-Ilse W (1999) Imaging of humic substance macromolecular structures in water and soils. Science 286:1335–1337

    CAS  Google Scholar 

  104. Engebretson RR, Amos T, von Wandruszka R (1996) Quantitative approach to humic acid associations. Environ Sci Technol 30:990–997

    CAS  Google Scholar 

  105. Schlautman MA, Morgan JJ (1993) Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials. Environ Sci Technol 27:961–969

    CAS  Google Scholar 

  106. Gauthier TD, Shane EC, Guerin WF et al (1986) Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ Sci Technol 20:1162–1166

    CAS  Google Scholar 

  107. Jota MAT, Hassett JP (1991) Effects of environmental variables on binding of a PCB Congener by dissolved humic substances. Environ Toxicol Chem 10:483–491

    CAS  Google Scholar 

  108. Murphy EM, Zachara JM, Smith SC et al (1994) Interaction of hydrophobic organic compounds with mineral-bound humic substances. Environ Sci Technol 28:1291–1299

    CAS  Google Scholar 

  109. Jones KD, Tiller CL (1999) Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: a comparison of dissolved and clay bound humic. Environ Sci Technol 33:580–587

    CAS  Google Scholar 

  110. Akkanen J, Kukkonen JVK (2001) Effects of water hardness and dissolved organic material on bioavailability of selected organic chemicals. Environ Toxicol Chem 20:2303–2308

    CAS  Google Scholar 

  111. Verge C, Moreno A, Bravo J et al (2001) Influence of water hardness on the bioavailability and toxicity of linear alkylbenzene sulphonate (LAS). Chemosphere 44:1749–1757

    CAS  Google Scholar 

  112. Björk M (1995) Bioavailability and uptake of hydrophobic organic contaminants in bivalve filter feeders. Ann Zool Fennici 32:237–245

    Google Scholar 

  113. Bejarano AC, Widenfalk A, Decho AW et al (2003) Bioavailability of the organophosporous insecticide chlorpyrifos to the suspension-feeding bivalve, Mercenaria mercenaria, following exposure to dissolved and particulate matter. Environ Toxicol Chem 22:2100–2105

    CAS  Google Scholar 

  114. Gourlay C, Mouchel JM, Tusseau-Vuillemin MH et al (2005) Influence of algal and bacterial particulate organic matter on benzo[a]pyrene bioaccumulation in Daphnia magna. Sci Total Environ 346:220–230

    CAS  Google Scholar 

  115. Di Toro DM, Zabra CS, Hansen DJ et al (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583

    Google Scholar 

  116. Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. Environ Toxicol Chem 25:1239–1245

    CAS  Google Scholar 

  117. Huckins JN, Tubergen MW, Manuweera GK (1990) Semipermeable membrane devices containing model lipid: a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere 20:533–552

    CAS  Google Scholar 

  118. Booij K, Hofmans HE, Fischer CV et al (2003) Temperature-dependent uptake rates of nonpolar organic compounds by semipermeable membrane devices and low-density polyethylene membranes. Environ Sci Technol 37:361–366

    CAS  Google Scholar 

  119. McCarthy JF, Southworth GR, Ham KD et al (2000) Time-integrated, flux-based monitoring using semipermeable membrane devices to estimate the contribution of industrial facilities to regional polychlorinated biphenyl budgets. Environ Toxicol Chem 19:352–359

    CAS  Google Scholar 

  120. Lyytikäinen M, Rantalainen AL, Mikkelson P et al (2003) Similarities in bioaccumulation patterns of polychlorinated dibenzo-p-dioxins and furans and polychlorinated diphenyl ethers in laboratory-exposed oligochaetes and semipermeable membrane devices and in field-collected chironomids. Environ Toxicol Chem 22:2405–2415

    Google Scholar 

  121. Mayer P, Vaes WHJ, Wijnker F et al (2000) Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ Sci Technol 34:5177–5183

    CAS  Google Scholar 

  122. Hawthorne SB, Grabanski CB, Miller DJ (2009) Solid-phase-microextraction measurement of 62 polychlorinated biphenyl congeners in milliliter sediment pore water samples and determination of K-DOC values. Anal Chem 81:6936–6943

    CAS  Google Scholar 

  123. Legind CN, Karlson U, Burken JG et al (2007) Determining chemical activity of (semi)volatile compounds by headspace solid-phase microextraction. Anal Chem 79:2869–2876

    CAS  Google Scholar 

  124. Mäenpää K, Leppänen MT, Reichenberg F et al (2011) Equilibrium sampling of persisten and bioaccumulative compounds in soil and sediment – comparison of two approaches to determine equilibrium partition concentration in lipids. Environ Sci Technol. doi:10.1021/es1029969

  125. Zhou SN, Oakes KD, Servos MR et al (2008) Application of solid-phase microextraction for in vivo laboratory and field sampling of pharmaceuticals in fish. Environ Sci Technol 42:6073–6079

    CAS  Google Scholar 

  126. Zhang X, Oakes KD, Cui SF et al (2010) Tissue-specific in vivo bioconcentration of pharmaceuticals in rainbow trout (Oncorhynchus mykiss) using space-resolved solid-phase microextraction. Environ Sci Technol 44:3417–3422

    CAS  Google Scholar 

  127. Jahnke A, Mayer P (2010) Do complex matrices modify the sorptive properties of polydimethylsiloxane (PDMS) for non-polar organic chemicals? J Chromatogr A 1217:4765–4770

    CAS  Google Scholar 

  128. Rusina TP, Smedes F, Klanova J et al (2007) Polymer selection for passive sampling: a comparison of critical properties. Chemosphere 68:1344–1351

    CAS  Google Scholar 

  129. Rusina TP, Smedes F, Klanova J (2010) Diffusion coefficients of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in polydimethylsiloxane and low-density polylethylene polymers. J Appl Polymer Sci 116:1803–1810

    CAS  Google Scholar 

  130. Mayer P, Torang L, Glaesner N et al (2009) Silicone membrane equilibrator: measuring chemical activity of nonpolar chemicals with poly(dimethylsiloxane) microtubes immersed directly in tissue and lipids. Anal Chem 81:1536–1542

    CAS  Google Scholar 

  131. Jahnke A, Mayer P, Broman D et al (2009) Possibilities and limitations of equilibrium sampling using polydimethylsiloxane in fish tissue. Chemosphere 77:764–770

    CAS  Google Scholar 

  132. Reichenberg F, Smedes F, Jonsson JA et al (2008) Determining the chemical activity of hydrophobic organic compounds in soil using polymer coated vials. Chem Cent J 2:8

    Google Scholar 

  133. Meloche LM, deBruyn AMH, Otton SV et al (2009) Assessing exposure of sediment biota to organic contaminants by thin-film solid phase extraction. Environ Toxicol Chem 28:247–253

    CAS  Google Scholar 

  134. St George T, Vlahos P, Harner T et al (2011) A rapidly equilibrating, thin film, passive water sampler for organic contaminants; characterization and field testing. Environ Pollut 159:481–486

    CAS  Google Scholar 

  135. Wilcockson JB, Gobas FAP (2001) Thin-film solid-phase extraction to measure fugacities of organic chemicals with low volatility in biological samples. Environ Sci Technol 35:1425–1431

    CAS  Google Scholar 

  136. Hayatsu H (1992) Cellulose bearing covalently linked copper phthalocyamine trisulphonate as an adsorbent selective for polycyclic compounds and its use in studies of environmental mutagens and carcinogens. J Chromatogr 597:37–56

    CAS  Google Scholar 

  137. Sakamoto H, Hayatsu H (1990) A simple method for monitoring mutagenicity of river water – mutagens in Yodo river system, Kyoto Osaka. Bull Environ Contam Toxicol 44:521–528

    CAS  Google Scholar 

  138. Kummrow F, Rech CM, Coimbrao CA et al (2006) Blue rayon-anchored technique/Salmonella microsome microsuspension assay as a tool to monitor for genotoxic polycyclic compounds in Santos estuary. Mutat Res-Genetic Toxicol Environ Mutagenesis 609:60–67

    CAS  Google Scholar 

  139. Watanabe T, Shiozawa T, Takahashi Y et al (2002) Mutagenicity of two 2-phenylbenzotriazole derivatives, 2-[2-(acetylamino)-4-(diethylamino)-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2 H-benzotriazole and 2-[2-(acetylamino)-4-(diallylamino)-5-methoxyphenyl]-5-amino-7-bromo-4-c hloro-2 H-benzotriazole and their detection in river water in Japan. Mutagenesis 17:293–299

    CAS  Google Scholar 

  140. Rico-Rico A, Droge STJ, Hermens JLM (2010) Predicting sediment sorption coefficients for linear alkylbenzenesulfonate congeners from polyacrylate-water partition coefficients at different salinities. Environ Sci Technol 44:941–947

    CAS  Google Scholar 

  141. Wu SF, Ding WH (2010) Fast determination of synthetic polycyclic musks in sewage sludge and sediments by microwave-assisted headspace solid-phase microextraction and gas chromatography–mass spectrometry. J Chromatogr A 1217:2776–2781

    CAS  Google Scholar 

  142. Hale SE, Meynet P, Davenport RJ et al (2010) Changes in polycyclic aromatic hydrocarbon availability in River Tyne sediment following bioremediation treatments or activated carbon amendment. Water Res 44:4529–4536

    CAS  Google Scholar 

  143. Friedman CL, Burgess RM, Perron MM et al (2009) Comparing polychaete and polyethylene uptake to assess sediment resuspension effects on PCB bioavailability. Environ Sci Technol 43:2865–2870

    CAS  Google Scholar 

  144. Sormunen AJ, Tuikka AI, Akkanen J et al (2010) Predicting the bioavailability of sediment-associated spiked compounds by using the polyoxymethylene passive sampling and Tenax® extraction methods in sediments from three river basins in Europe. Arch Environ Contam Toxicol 59:80–90

    CAS  Google Scholar 

  145. Jonker MTO, Koelmans AA (2001) Polyoxymethylene solid phase extraction as a partitioning method for hydrophobic organic chemicals in sediment and soot. Environ Sci Technol 35:3742–3748

    CAS  Google Scholar 

  146. van der Heijden SA, Jonker MTO (2009) PAH bioavailability in field sediments: comparing different methods for predicting in situ bioaccumulation. Environ Sci Technol 43:3757–3763

    Google Scholar 

  147. Cornelissen G, Rigterink H, Ten Hulscher DEM et al (2001) A simple Tenax® extraction method to determine the availability of sediment-sorbed organic compounds. Environ Toxicol Chem 20:706–711

    CAS  Google Scholar 

  148. Trimble TA, You J, Lydy MJ (2008) Bioavailability of PCBs from field-collected sediments: application of Tenax extraction and matrix-SPME techniques. Chemosphere 71:337–344

    CAS  Google Scholar 

  149. Dean JR, Scott WC (2004) Recent developments in assessing the bioavailability of persistent organic pollutants in the environment. Trac Trends Anal Chem 23:609–618

    CAS  Google Scholar 

  150. Mayer P, Tolls J, Hermens L et al (2003) Equilibrium sampling devices. Environ Sci Technol 37:184A–191A

    Google Scholar 

  151. Jahnke A, McLachlan MS, Mayer P (2008) Equilibrium sampling: partitioning of organochlorine compounds from lipids into polydimethylsiloxane. Chemosphere 73:1575–1581

    CAS  Google Scholar 

  152. Huckins JN, Manuweera GK, Petty JD et al (1993) Lipid-containing semipermeable-membrane devices for monitoring organic contaminants in water. Environ Sci Technol 27:2489–2496

    CAS  Google Scholar 

  153. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148

    CAS  Google Scholar 

  154. Landrum PF, Lee HI, Lydy MJ (1992) Toxicokinetics in aquatic systems: model comparisons and use in hazard assessment. Environ Toxicol Chem 11:1709–1725

    CAS  Google Scholar 

  155. Arnot JA, Gobas FAPC (2004) A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environ Toxicol Chem 23:2343–2355

    CAS  Google Scholar 

  156. McKim JM, Nichols JW (1994) Use of physiologically based toxicokinetic models in a mechanistic approach to aquatic toxicology. In: Malins DC, Ostrander GK (eds) Aquatic toxicology: molecular, biochemical, and cellular perspectives. Lewis, Boca Raton, FL

    Google Scholar 

  157. Cahill TM, Cousins I, MacKay D (2003) Development and application of a generalized physiologically based pharmacokinetic model for multiple environmental contaminants. Environ Toxicol Chem 22:26–34

    CAS  Google Scholar 

  158. Landrum PF, Hayton WL, Lee H et al (1994) Synopsis of discussion session on the kinetics behind environmental bioavailability. In: Hamelink JL, Landrum PF, Bergman HL et al (eds) Bioavailability: physical, chemical and biological interactions. Lewis, Ann Arbor, MI

    Google Scholar 

  159. Sormunen AJ, Leppänen MT, Kukkonen JVK (2009) Examining the role of temperature and sediment-chemical contact time on desorption and bioavailability of sediment-associated tetrabromo diphenyl ether and benzo(a)pyrene. Ecotoxicol Environ Saf 72:1234–1241

    CAS  Google Scholar 

  160. Weston DP, Penry DL, Gulmann LK (2000) The role of ingestion as a route of contaminant bioaccumulation in a deposit-feeding polychaete. Arch Environ Contam Toxicol 38:446–454

    CAS  Google Scholar 

  161. Hamelink JL, Waybrant RC, Ball RC (1971) A proposal: exchange equilibria control the degree chlorinated hydrocarbons are biologically magnified in lentic environments. Trans Am Fish Soc 100:207–214

    CAS  Google Scholar 

  162. McFarland VA, Clarke JU (1986) Testing bioavailability of polychlorinated biphenyls from sediments using a two-level approach. Proceedings of the sixth USEPA committee on water quality. In: Wiler RG (ed) Proceedings of the US army engineer committee on water quality. Hydrologic Engineering Research Center, Davis, CA

    Google Scholar 

  163. Tracey GA, Hansen DJ (1996) Use of biota-sediment accumulation factors to assess similarity of nonionic organic chemical exposure to benthically-coupled organisms of differing trophic mode. Arch Environ Contam Toxicol 30:467–475

    CAS  Google Scholar 

  164. Wong CS, Capel PD, Nowell LH (2001) National-scale, field-based evaluation of the biota-sediment accumulation factor model. Environ Sci Technol 35:1709–1715

    CAS  Google Scholar 

  165. Webster E, Cowan-Ellsberry CE, McCarty L (2004) Putting science into persistence, bioaccumulation, and toxicity evaluations. Environ Toxicol Chem 23:2473–2482

    CAS  Google Scholar 

  166. Kraaij R, Mayer P, Busser FJM et al (2003) Measured pore-water concentrations make equilibrium partitioning work – a data analysis. Environ Sci Technol 37:268–274

    CAS  Google Scholar 

  167. Werner D, Hale SE, Ghosh U et al (2010) Polychlorinated biphenyl sorption and availability in field-contaminated sediments. Environ Sci Technol 44:2809–2815

    CAS  Google Scholar 

  168. MacKay D, Paterson S (1981) Calculating fugacity. Environ Sci Technol 15:1006–1014

    CAS  Google Scholar 

  169. Lohmann R, Burgess RM, Cantwell MG et al (2004) Dependency of polychlorinated biphenyl and polycyclic aromatic hydrocarbon bioaccumulation in Mya arenaria on both water column and sediment bed chemical activities. Environ Toxicol Chem 23:2551–2562

    CAS  Google Scholar 

  170. USEPA (2005) Contaminated sediment remediation: guidance for hazardous waste sites. http://www.epa.gov/superfund/health/conmedia/sediment/guidance.htm. Accessed 28 Jan 2011

  171. Maruya KA, Landrum PF, Burgess RM et al. (2011) Incorporating contaminant bioavailability into sediment quality assessment frameworks. Integr Environ Assess Manage. doi:10.1002/ieam.135

  172. McLeod PB, van den Heuvel-Greve MJ, Allen-King RM et al (2004) Effects of particulate carbonaceous matter on the bioavailability of benzo[a]pyrene and 2,2',5,5'-tetrachlorobiphenyl to the clam, Macoma baltica. Environ Sci Technol 38:4549–4556

    CAS  Google Scholar 

  173. Accardi-Dey A, Gschwend PM (2002) Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environ Sci Technol 36:21–29

    CAS  Google Scholar 

  174. Song JZ, Peng PA, Huang WL (2002) Black carbon and kerogen in soils and sediments. 1. Quantification and characterization. Environ Sci Technol 36:3960–3967

    CAS  Google Scholar 

  175. Prest HF, Richardson BJ, Jacobson LA et al. (1995) Monitoring organochlorines with semi-permeable membrane devices (SPMDs) and mussels (Mytilus edulis) in Corio Bay, Victoria, Australia. Mar Poll Bull 30:543–554

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarkko Akkanen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Akkanen, J. et al. (2012). Bioavailability of Organic Contaminants in Freshwater Environments. In: Guasch, H., Ginebreda, A., Geiszinger, A. (eds) Emerging and Priority Pollutants in Rivers. The Handbook of Environmental Chemistry(), vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25722-3_2

Download citation

Publish with us

Policies and ethics