Skip to main content

Occurrence and Elimination of Pharmaceuticals During Conventional Wastewater Treatment

  • Chapter
  • First Online:
Emerging and Priority Pollutants in Rivers

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 19))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HRT:

Hydraulic retention time

NSAIDs:

Nonsteroidal anti-inflammatory drugs

SRT:

Solid retention time

WWTP:

Wastewater treatment plant

References

  1. Daughton CG (2003) Cradle-to-cradle stewardship of drugs for minimizing their environmental disposition while promoting human health. I. Rational for and avenues toward a green pharmacy. Environ Health Perspect 111:757–774

    Article  CAS  Google Scholar 

  2. Ruhoya ISR, Daughton CG (2008) Beyond the medicine cabinet: an analysis of where and why medications accumulate. Environ Int 34:1157–1169

    Article  CAS  Google Scholar 

  3. Bartelt-Hunt SL, Snow DD, Damon T, Shockley J, Hoagland K (2009) The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska. Environ Pollut 157:786–791

    Article  CAS  Google Scholar 

  4. Nilsen EB, Rosenbauer RR, Furlong ET, Burkhardt MR, Werner SL, Greaser L, Noriega M (2007) Pharmaceuticals, personal care products and anthropogenic waste indicators detected in streambed sediments of the lower Columbia River and selected tributaries, National Ground Water Association, Paper 4483, p 15

    Google Scholar 

  5. Vazquez-Roig P, Segarra R, Blasco C, Andreu V, Picó Y (2010) Determination of pharmaceuticals in soils and sediments by pressurized liquid extraction and liquid chromatography tandem mass spectrometry. J Chromatogr A 1217:2471–2483

    Article  CAS  Google Scholar 

  6. Gielen GJHP, Heuvel MRvd, Clinton PW, Greenfield LG (2009) Factors impacting on pharmaceutical leaching following sewage application to land. Chemosphere 74:537–542

    Article  CAS  Google Scholar 

  7. Kinney CA, Furlong ET, Werner SL, Cahill JD (2006) Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water. Environ Toxicol Chem 25:317–326

    Article  CAS  Google Scholar 

  8. Ternes TA, Bonerz M, Herrmann N, Teiser B, Andersen HR (2007) Irrigation of treated wastewater in Braunschweig, Germany: an option to remove pharmaceuticals and musk fragrances. Chemosphere 66:894–904

    Article  CAS  Google Scholar 

  9. Carbonell G, Pro J, Gómez N, Babín MM, Fernández C, Alonso E, Tarazona JV (2009) Sewage sludge applied to agricultural soil: ecotoxicological effects on representative soil organisms. Ecotoxicol Environ Saf 72:1309–1319

    Article  CAS  Google Scholar 

  10. Lapen DR, Topp E, Metcalfe CD, Li H, Edwards M, Gottschall N, Bolton P, Curnoe W, Payne M, Beck A (2008) Pharmaceutical and personal care products in tile drainage following land application of municipal biosolids. Sci Total Environ 399:50–65

    Article  CAS  Google Scholar 

  11. Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol Environ Saf 59:309–315

    Article  CAS  Google Scholar 

  12. Nentwig G, Oetken M, Oehlmann J (2004) Effects of pharmaceuticals on aquatic invertebrates—the example of carbamazepine and clofibric acid. In: Kümmerer K (ed) Pharmaceuticals in the environment. Sources, fate, effects and risks, 2nd edn. Springer, Berlin, pp 195–207

    Chapter  Google Scholar 

  13. Schnell S, Bols NC, Barata C, Porte C (2009) Single and combined toxicity of pharmaceuticals and personal care products (PPCPs) on the rainbow trout liver cell line RTL-W1. Aquat Toxicol 93:244–252

    Article  CAS  Google Scholar 

  14. Metcalf and Eddy Inc (2003) Wastewater engineering – treatment and reuse, 4th edn. Tata McGraw Hill, New Delhi

    Google Scholar 

  15. Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107:2319–2364

    Article  CAS  Google Scholar 

  16. Larsson DGJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755

    Article  CAS  Google Scholar 

  17. Li D, Yang M, Hu J, Ren L, Zhang Y, Li K (2008) Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river. Environ Toxicol Chem 27:80–86

    Article  CAS  Google Scholar 

  18. Li D, Yang M, Hu J, Zhang Y, Chang H, Jin F (2008) Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. Water Res 42:307–317

    Article  CAS  Google Scholar 

  19. Miège C, Choubert JM, Ribeiro L, Eusèbe M, Coquery M (2009) Fate of pharmaceuticals and personal care products in wastewater treatment plants - Conception of a database and first results. Environ Pollut 157:1721–1726

    Article  CAS  Google Scholar 

  20. Jelic A, Gros M, Ginebreda A, Cespedes-Sánchez R, Ventura F, Petrovic M, Barcelo D (2011) Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res 45:1165–1176

    Article  CAS  Google Scholar 

  21. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res 43:363–380

    Article  CAS  Google Scholar 

  22. Zorita S, Mårtensson L, Mathiasson L (2009) Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Sci Total Environ 407:2760–2770

    Article  CAS  Google Scholar 

  23. Heberer T, Reddersen K, Mechlinski A (2002) From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas. Water Sci Technol 46:81

    CAS  Google Scholar 

  24. Escher BI, Bramaz N, Richter M, Lienert J (2006) Comparative ecotoxicological hazard assessment of beta-blockers and their human metabolites using a mode-of-action-based test battery and a QSAR approach†. Environ Sci Technol 40:7402–7408

    Article  CAS  Google Scholar 

  25. Ramil M, El Aref T, Fink G, Scheurer M, Ternes TA (2009) Fate of beta blockers in aquatic-sediment systems: sorption and biotransformation. Environ Sci Technol 44:962–970

    Article  CAS  Google Scholar 

  26. Lee H-B, Sarafin K, Peart TE (2007) Determination of [beta]-blockers and [beta]2-agonists in sewage by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1148:158–167

    Article  CAS  Google Scholar 

  27. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245

    Article  CAS  Google Scholar 

  28. Vieno N, Tuhkanen T, Kronberg L (2007) Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Res 41:1001–1012

    Article  CAS  Google Scholar 

  29. Bendz D, Paxéus NA, Ginn TR, Loge FJ (2005) Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. J Hazard Mater 122:195–204

    Article  CAS  Google Scholar 

  30. Gros M, Petrovic M, Ginebreda A, Barceló D (2010) Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ Int 36:15–26

    Article  CAS  Google Scholar 

  31. Vieno NM, Tuhkanen T, Kronberg L (2006) Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography-tandem mass spectrometry detection. J Chromatogr A 1134:101–111

    Article  CAS  Google Scholar 

  32. Health, U.S. (2010) Health, United States, 2009: with special feature on medical technology. National Center for Health Statistics, Hyattsville, MD

    Google Scholar 

  33. Gracia-Lor E, Sancho JV, Hernández F (2010) Simultaneous determination of acidic, neutral and basic pharmaceuticals in urban wastewater by ultra high-pressure liquid chromatography-tandem mass spectrometry. J Chromatogr A 1217:622–632

    Article  CAS  Google Scholar 

  34. Metcalfe CD, Koenig BG, Bennie DT, Servos M, Ternes TA, Hirsch R (2003) Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants. Environ Toxicol Chem 22:2872–2880

    Article  CAS  Google Scholar 

  35. Miao X-S, Metcalfe CD (2003) Determination of cholesterol-lowering statin drugs in aqueous samples using liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A 998:133–141

    Article  CAS  Google Scholar 

  36. Radjenovic J, Petrovic M, Barceló D (2009) Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res 43:831–841

    Article  CAS  Google Scholar 

  37. Kümmerer K (2003) Significance of antibiotics in the environment. J Antimicrob Chemother 52:5–7

    Article  CAS  Google Scholar 

  38. Huang CH, Renew JE, Smeby KL, Pinkerston K, Sedlak DL (2001) Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis. Water Resour Update 120:30–40

    Google Scholar 

  39. Jones OAH, Voulvoulis N, Lester JN (2004) Potential ecological and human health risks associated with the presence of pharmaceutically active compounds in the aquatic environment. Crit Rev Toxicol 34:335–350

    Article  CAS  Google Scholar 

  40. Le-Minh N, Khan SJ, Drewes JE, Stuetz RM (2010) Fate of antibiotics during municipal water recycling treatment processes. Water Res 44:4295–4323

    Article  CAS  Google Scholar 

  41. Brown KD, Kulis J, Thomson B, Chapman TH, Mawhinney DB (2006) Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci Total Environ 366:772–783

    Article  CAS  Google Scholar 

  42. Choi K-J, Kim S-G, Kim C-W, Kim S-H (2007) Determination of antibiotic compounds in water by on-line SPE-LC/MSD. Chemosphere 66:977–984

    Article  CAS  Google Scholar 

  43. Göbel A, McArdell CS, Joss A, Siegrist H, Giger W (2007) Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci Total Environ 372:361–371

    Article  CAS  Google Scholar 

  44. Levine AD, Meyer MT, Kish G (2006) Evaluation of the persistence of micropollutants through pure-oxygen activated sludge nitrification and denitrification. Water Environ Res 78:2276–2285

    Article  CAS  Google Scholar 

  45. Yang S, Cha J, Carlson K (2005) Simultaneous extraction and analysis of 11 tetracycline and sulfonamide antibiotics in influent and effluent domestic wastewater by solid-phase extraction and liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A 1097:40–53

    Article  CAS  Google Scholar 

  46. Peng X, Wang Z, Kuang W, Tan J, Li K (2006) A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. Sci Total Environ 371:314–322

    Article  CAS  Google Scholar 

  47. Gobel A, Thomsen A, McArdell CS, Joss A, Giger W (2005) Occurrence and Sorption Behavior of Sulfonamides, Macrolides, and Trimethoprim in Activated Sludge Treatment. Environ Sci Technol 39:3981–3989

    Article  CAS  Google Scholar 

  48. Watkinson AJ, Murby EJ, Costanzo SD (2007) Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res 41:4164–4176

    Article  CAS  Google Scholar 

  49. Golet EM, Xifra I, Siegrist H, Alder AC, Giger W (2003) Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ Sci Technol 37:3243

    Article  CAS  Google Scholar 

  50. Lindberg RH, Wennberg P, Johansson MI, Tysklind M, Andersson BAV (2005) Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environ Sci Technol 39:3421–3429

    Article  CAS  Google Scholar 

  51. Alder AC, McArdell CS, Golet EM, Ibric S, Molnar E, Nipales NS, Giger W (2001) Occurrence and fate of fluoroquinolone, macrolide, and sulfonamide antibiotics during wastewater treatment and in ambient waters in Switzerland. In: Daughton CG, Jones-Lepp TM (eds) Pharmaceuticals and personal care products in the environment, scientific and regulatory issues, American Chemical Society Symposium Series 791. American Chemical Society, Washington, DC, pp 56–69

    Chapter  Google Scholar 

  52. Golet EM, Alder AC, Hartmann A, Ternes TA, Giger W (2001) Trace determination of fluoroquinolone antibacterial agents in urban wastewater by solid-phase extraction and liquid chro matography with fluorescence detection. Anal Chem 73:3632

    Article  CAS  Google Scholar 

  53. Kim S, Eichhorn P, Jensen JN, Weber AS, Aga DS (2005) Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environ Sci Technol 39:5816–5823

    Article  CAS  Google Scholar 

  54. Yang S, Carlson K (2003) Evolution of antibiotic occurrence in a river through pristine, urban and agricultural landscapes. Water Res 37:4645–4656

    Article  CAS  Google Scholar 

  55. Alexy R, Kümpel T, Kümmerer K (2004) Assessment of degradation of 18 antibiotics in the Closed Bottle Test. Chemosphere 57:505–512

    Article  CAS  Google Scholar 

  56. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ Health Perspect 107:907–938

    Article  CAS  Google Scholar 

  57. Göbel A, Thomsen A, McArdell CS, Alder AC, Giger W, Theiβ N, Loeffler D, Ternes TA (2005) Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge. J Chromatogr A 1085:179–189

    Article  CAS  Google Scholar 

  58. Gulkowska A, Leung HW, So MK, Taniyasu S, Yamashita N, Yeung LWY, Richardson BJ, Lei AP, Giesy JP, Lam PKS (2008) Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water Res 42:395–403

    Article  CAS  Google Scholar 

  59. Karthikeyan KG, Meyer MT (2006) Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci Total Environ 361:196–207

    Article  CAS  Google Scholar 

  60. Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109

    Article  CAS  Google Scholar 

  61. Richardson SD (2010) Environmental mass spectrometry: emerging contaminants and current issues. Anal Chem 82:4742–4774

    Article  CAS  Google Scholar 

  62. Radjenovic J, Petrovic M, Barceló D (2007) Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Anal Bioanal Chem 387:1365–1377

    Article  CAS  Google Scholar 

  63. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals and other organic wastewater contaminants in US streams, 1999-2000: a national reconnaissance. Environ Sci Technol 36:1202

    Article  CAS  Google Scholar 

  64. Fertig EJ, Mattson RH (2008) Carbamazepine in the book: Epilepsy: A comprehensive textbook, vol 2. Lippincott Williams and Wilkins, Philadephia, PA, pp 1543–1556

    Google Scholar 

  65. Yoshimura R, Yanagihara N, Terao T, Minami K, Toyohira Y, Ueno S, Uezono Y, Abe K, Izumi F (1998) An active metabolite of carbamazepine, carbamazepine-10,11-epoxide, inhibits ion channel-mediated catecholamine secretion in cultured bovine adrenal medullary cells. Psychopharmacology 135:368–373

    Article  CAS  Google Scholar 

  66. Shorvon S, Perucca E, FIsh D, Dodson E (2004) Carbamazepine in: the treatment of epilepsy. Blackwell Science, Maiden, MA, pp 131–132

    Book  Google Scholar 

  67. Miao X-S, Yang J-J, Metcalfe CD (2005) Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Environ Sci Technol 39:7469–7475

    Article  CAS  Google Scholar 

  68. Clara M, Kreuzinger N, Strenn B, Gans O, Kroiss H (2005) The solids retention time – a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res 39:97–106

    Article  CAS  Google Scholar 

  69. Clara M, Strenn B, Kreuzinger N (2004) Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration. Water Res 38:947–954

    Article  CAS  Google Scholar 

  70. Joss A, Keller E, Alder AC, Gbel A, McArdell CS, Ternes T, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39:3139

    Article  CAS  Google Scholar 

  71. Zhang Y, Geißen S-U, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73:1151–1161

    Article  CAS  Google Scholar 

  72. Ternes TA, Janex-Habibi M-L, Knacker T, Kreuzinger N, Siegrist H (2005) Assessment of technologies for the removal of pharmaceuticals and personal care products in sewage and drinking water facilities – POSEIDON Project

    Google Scholar 

  73. Kinney CA, Furlong ET, Kolpin DW, Burkhardt MR, Zaugg SD, Werner SL, Bossio JP, Benotti MJ (2008) Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure. Environ Sci Technol 42:1863–1870

    Article  CAS  Google Scholar 

  74. Lillenberg M, Yurchenko S, Kipper K, Herodes K, Pihl V, Sepp K, Lõhmus R, Nei L (2009) Simultaneous determination of fluoroquinolones, sulfonamides and tetracyclines in sewage sludge by pressurized liquid extraction and liquid chromatography electrospray ionization-mass spectrometry. J Chromatogr A 1216:5949–5954

    Article  CAS  Google Scholar 

  75. Lindberg RH, Fick J, Tysklind M (2010) Screening of antimycotics in Swedish sewage treatment plants – Waters and sludge. Water Res 44:649–657

    Article  CAS  Google Scholar 

  76. McClellan K, Halden RU (2010) Pharmaceuticals and personal care products in archived U.S. biosolids from the, 2001 EPA national sewage sludge survey. Water Res 44:658–668

    Article  CAS  Google Scholar 

  77. Radjenovic J, Jelic A, Petrovic M, Barcelo D (2009) Determination of pharmaceuticals in sewage sludge by pressurized liquid extraction (PLE) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Anal Bioanal Chem 393:1685–1695

    Article  CAS  Google Scholar 

  78. Meakins NC, Bubb JM, Lester JN (1994) Fate and behaviour of organic micropollutants during wastewater treatment processes: a review. Int J Environ Pollut 4:27–58

    CAS  Google Scholar 

  79. Chenxi W, Spongberg AL, Witter JD (2008) Determination of the persistence of pharmaceuticals in biosolids using liquid-chromatography tandem mass spectrometry. Chemosphere 73:511–518

    Article  CAS  Google Scholar 

  80. Nieto A, Borrull F, Marcé RM, Pocurull E (2007) Selective extraction of sulfonamides, macrolides and other pharmaceuticals from sewage sludge by pressurized liquid extraction. J Chromatogr A 1174:125–131

    Article  CAS  Google Scholar 

  81. Okuda T, Yamashita N, Tanaka H, Matsukawa H, Tanabe K (2009) Development of extraction method of pharmaceuticals and their occurrences found in Japanese wastewater treatment plants. Environ Int 35:815–820

    Article  CAS  Google Scholar 

  82. Spongberg AL, Witter JD (2008) Pharmaceutical compounds in the wastewater process stream in Northwest Ohio. Sci Total Environ 397:148–157

    Article  CAS  Google Scholar 

  83. Ort C, Lawrence MG, Rieckermann Jr, Joss A (2010) Sampling for pharmaceuticals and personal care products (PPCPs) and illicit drugs in wastewater systems: are your conclusions valid? a critical review. Environ Sci Technol 44:6024–6035

    Article  CAS  Google Scholar 

  84. Aviram M, Rosenblat M, Bisgaier CL, Newton RS (1998) Atorvastatin and gemfibrozil metabolites, but not the parent drugs, are potent antioxidants against lipoprotein oxidation. Atherosclerosis 138:271–280

    Article  CAS  Google Scholar 

  85. Shipkova M, Wieland E (2005) Glucuronidation in therapeutic drug monitoring. Clin Chim Acta 358:2–23

    Article  CAS  Google Scholar 

  86. Suárez S, Ramil M, Omil F, Lema JM (2005) Removal of pharmaceutically active compounds in nitrifying-denitrifying plants. Water Sci Technol 52:9–14

    Google Scholar 

  87. Castiglioni S, Bagnati R, Fanelli R, Pomati F, Calamari D, Zuccato E (2006) Removal of pharmaceuticals in sewage treatment plants in Italy. Environ Sci Technol 40:357–363

    Article  CAS  Google Scholar 

  88. Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H (2005) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39:4797

    Article  CAS  Google Scholar 

  89. Gómez MJ, Martínez Bueno MJ, Lacorte S, Fernández-Alba AR, Agüera A (2007) Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere 66:993–1002

    Article  CAS  Google Scholar 

  90. Jones OAH, Voulvoulis N, Lester JN (2005) Human pharmaceuticals in wastewater treatment processes. Crit Rev Environ Sci Technol 35:401–427

    Article  CAS  Google Scholar 

  91. Joss A, Keller E, Alder AC, Göbel A, McArdell CS, Ternes T, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39:3139–3152

    Article  CAS  Google Scholar 

  92. Lindqvist N, Tuhkanen T, Kronberg L (2005) Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Res 39:2219–2228

    Article  CAS  Google Scholar 

  93. Kreuzinger N, Clara M, Strenn B, Kroiss H (2004) Relevance of the sludge retention time (SRT) as design criteria for wastewater treatment plants for the removal of endocrine disruptors and pharmaceuticals from wastewater. Water Sci Technol 50:149–156

    CAS  Google Scholar 

  94. Lishman L, Smyth SA, Sarafin K, Kleywegt S, Toito J, Peart T, Lee B, Servos M, Beland M, Seto P (2006) Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Sci Total Environ 367:544–558

    Article  CAS  Google Scholar 

  95. Maurer M, Escher BI, Richle P, Schaffner C, Alder AC (2007) Elimination of [beta]-blockers in sewage treatment plants. Water Res 41:1614–1622

    Article  CAS  Google Scholar 

  96. Wick A, Fink G, Joss A, Siegrist H (2009) Fate of beta blockers and psycho-active drugs in conventional wastewater treatment. Water Res 43:1060–1074

    Article  CAS  Google Scholar 

  97. Paxéus N (2004) Removal of selected non-steroidal anti-inflammatory drugs (NSAIDs), gemfibrozil, carbamazepine, β-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment. Water Sci Technol 5:253–260

    Google Scholar 

  98. Andersen H, Siegrist H, Halling-Sørensen B, Ternes TA (2003) Fate of estrogens in a municipal sewage treatment plant. Environ Sci Technol 37:4021–4026

    Article  CAS  Google Scholar 

  99. Belfroid AC, Van der Horst A, Vethaak AD, Schäfer AJ, Rijs GBJ, Wegener J, Cofino WP (1999) Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands. Sci Total Environ 225:101–108

    Article  CAS  Google Scholar 

  100. Ternes TA, Kreckel P, Mueller J (1999) Erratum: Behaviour and occurrence of estrogens in municipal sewage treatment plants – II. Aerobic batch experiments with activated sludge. Sci Total Environ 228:89–99

    Article  CAS  Google Scholar 

  101. Alder AC, Bruchet A, Carballa M, Clara M, Joss A, Löffler D, McArdell CS, Miksch K, Omil F, Tuhkanen T, Ternes TA (2006) Consumption and occurrence. In: Ternes TA, Joss A (eds) Human pharmaceuticals, hormones and fragrances. IWA Publishing, London, pp 15–54

    Google Scholar 

  102. Ternes TA, Herrmann N, Bonerz M, Knacker T, Siegrist H, Joss A (2004) A rapid method to measure the solid-water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Res 38:4075

    Article  CAS  Google Scholar 

  103. Kosjek T, Heath E, Petrovic M, Barceló D (2007) Mass spectrometry for identifying pharmaceutical biotransformation products in the environment. TrAC Trends Anal Chem 26:1076–1085

    Article  CAS  Google Scholar 

  104. Matamoros V, Caselles-Osorio A, García J, Bayona JM (2008) Behaviour of pharmaceutical products and biodegradation intermediates in horizontal subsurface flow constructed wetland. A microcosm experiment. Sci Total Environ 394:171–176

    Article  CAS  Google Scholar 

  105. Heberer T (2002) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266:175

    Article  CAS  Google Scholar 

  106. Winkler M, Lawrence JR, Neu TR (2001) Selective degradation of ibuprofen and clofibric acid in two model river biofilm systems. Water Res 35:3197–3205

    Article  CAS  Google Scholar 

  107. Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch H Jr, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36:3855–3863

    Article  CAS  Google Scholar 

  108. Miao X-S, Metcalfe CD (2003) Determination of carbamazepine and its metabolites in aqueous samples using liquid chromatography – electrospray tandem mass spectrometry. Anal Chem 75:3731–3738

    Article  CAS  Google Scholar 

  109. Carballa M, Omil F, Lema JM, Llompart M, Garcia-Jares C, Rodriguez I, Gomez M, Ternes T (2004) Behaviour of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38:2918

    Article  CAS  Google Scholar 

  110. Reif R, Suárez S, Omil F, Lema JM (2008) Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage. Desalination 221:511–517

    Article  CAS  Google Scholar 

  111. Suárez S, Carballa M, Omil F, Lema JM (2008) How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev Environ Sci Biotechnol 7:125–138

    Article  CAS  Google Scholar 

  112. Ternes TA, Kreckel P, Mueller J (1999) Behaviour and occurrence of estrogens in municipal sewage treatment plants – II. Aerobic batch experiments with activated sludge. Sci Total Environ 225:91–99

    Article  CAS  Google Scholar 

  113. Kümmerer K (2004) Pharmaceuticals in the environment: sources, fate effects and risks. Springer, Berlin

    Book  Google Scholar 

  114. Zorita S, Mårtensson L, Mathiasson L (2007) Hollow-fibre supported liquid membrane extraction for determination of fluoxetine and norfluoxetine concentration at ultra trace level in sewage samples. J Sep Sci 30:2513–2521

    Article  CAS  Google Scholar 

  115. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  116. Kwon J-W, Armbrust KL (2006) Laboratory persistence and fate of fluoxetine in aquatic environments. Environ Toxicol Chem 25:2561–2568

    Article  CAS  Google Scholar 

  117. Redshaw C, Cooke M, Talbot H, McGrath S, Rowland S (2008) Low biodegradability of fluoxetine HCl, diazepam and their human metabolites in sewage sludge-amended soil. J Soils Sedim 8:217–230

    Article  CAS  Google Scholar 

  118. Chu S, Metcalfe CD (2007) Analysis of paroxetine, fluoxetine and norfluoxetine in fish tissues using pressurized liquid extraction, mixed mode solid phase extraction cleanup and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1163:112–118

    Article  CAS  Google Scholar 

  119. Gros M, Petrovic M, Barceló D (2006) Development of a multi-residue analytical methodology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta 70:678–690

    Article  CAS  Google Scholar 

  120. Batt AL, Bruce IB, Aga DS (2006) Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environ Pollut 142:295–302

    Article  CAS  Google Scholar 

  121. Pérez S, Eichhorn P, Aga DS (2005) Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environ Toxicol Chem 24:1361–1367

    Article  Google Scholar 

  122. Batt AL, Kim S, Aga DS (2007) Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere 68:428–435

    Article  CAS  Google Scholar 

  123. Kobayashi Y, Yasojima M, Komori K, Suzuki Y, Tanaka H (2006) Removal characteristics of human antibiotics during wastewater treatment in Japan. Water Pract Technol 1:1–9

    Google Scholar 

  124. Carberry J, Englande A (1983) Sludge characteristics and behavior. Martinus Nijhoff, Boston, MA

    Book  Google Scholar 

  125. Lindberg RH, Olofsson U, Rendahl P, Johansson MI, Tysklind M, Andersson BAV (2006) Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environ Sci Technol 40:1042–1048

    Article  CAS  Google Scholar 

  126. Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35:3397–3406

    Article  CAS  Google Scholar 

  127. Suarez S, Carballa M, Omil F, Lema JM (2008) How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Reviews in Environmental Science and Biotechnology 7:125–138

    Article  CAS  Google Scholar 

  128. Huggett DB, Khan IA, Foran CM, Schlenk D (2003) Determination of beta-adrenergic receptor blocking pharmaceuticals in united states wastewater effluent. Environmental Pollution 121:199–205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Jelić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jelić, A., Gros, M., Petrović, M., Ginebreda, A., Barceló, D. (2012). Occurrence and Elimination of Pharmaceuticals During Conventional Wastewater Treatment. In: Guasch, H., Ginebreda, A., Geiszinger, A. (eds) Emerging and Priority Pollutants in Rivers. The Handbook of Environmental Chemistry(), vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25722-3_1

Download citation

Publish with us

Policies and ethics