Skip to main content

Fluid Resuscitation: Think Microcirculation

  • Chapter
  • 2296 Accesses

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM,volume 2012))

Abstract

The goal of fluid resuscitation in intensive care unit (ICU) patients is to restore effective tissue perfusion and oxygen delivery (DO2). Fluid resuscitation must be started as a first-line treatment in the management of septic or hemorrhagic shock. Fluid administration should be titrated to clinical endpoints of perfusion (such as capillary refill and urine output) and also to macrocirculatory parameters of global perfusion. It is recommended that fluids should be given only if changes in preload result in significant changes in stroke volume. However, assessment of the adequacy of resuscitation requires attention to both the macroand the microcirculation. Microcirculatory dysfunction is a central abnormality in septic and hemorragic shock and relationships between the macro- and microcirculations are complex. It is, therefore, impossible to predict the microvascular response after a positive fluid challenge in ICU patients without assessment of the microcirculation. However, techniques to monitor the microcirculation are not yet available for clinical practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dellinger RP, Levy MM, Carlet JM, et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36: 296–327

    Article  PubMed  Google Scholar 

  2. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32: 1825–1831

    Article  PubMed  Google Scholar 

  3. Trzeciak S, Dellinger RP, Parrillo JE, et al (2007) Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49: 88–98

    Article  PubMed  Google Scholar 

  4. Ospina-Tascon G, Neves AP, Occhipinti G, et al (2010) Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med 36: 949–955

    Article  PubMed  Google Scholar 

  5. Pottecher J, Deruddre S, Teboul JL, et al (2010) Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients. Intensive Care Med 36: 1867–1874

    Article  PubMed  Google Scholar 

  6. Jhanji S, Vivian-Smith A, Lucena-Amaro S, Watson D, Hinds CJ, Pearse RM (2010) Haemodynamic optimisation improves tissue microvascular flow and oxygenation after major surgery: a randomised controlled trial. Crit Care 14: R151

    Article  PubMed  Google Scholar 

  7. Legrand M, Bezemer R, Kandil A, Demirci C, Payen D, Ince C (2011) The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats. Intensive Care Med 37: 1534–1542

    Article  PubMed  Google Scholar 

  8. Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C (2007) Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express 15: 15101–15114

    Article  PubMed  CAS  Google Scholar 

  9. De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent J-L (2010) Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med 36: 1813–1825

    Article  PubMed  Google Scholar 

  10. Arnold RC, Parrillo JE, Dellinger RP, et al (2009) Point-of-care assessment of microvascular blood flow in critically ill patients. Intensive Care Med 35: 1761–1766

    Article  PubMed  Google Scholar 

  11. Ospina-Tascon G, Neves AP, Occhipinti G, et al (2010) Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med 36: 949–955

    Article  PubMed  Google Scholar 

  12. Dubin A, Pozo MO, Casabella CA, et al (2009) Comparison of 6% hydroxyethyl starch 130/0.4 and saline solution for resuscitation of the microcirculation during the early goaldirected therapy of septic patients. J Crit Care 25: 659

    Google Scholar 

  13. Verdant CL, De Backer D, Bruhn A, et al (2009) Evaluation of sublingual and gut mucosal microcirculation in sepsis: A quantitative analysis. Crit Care Med 37: 2875–2881

    Article  PubMed  Google Scholar 

  14. Moens AL (2005) Flow-mediated vasodilation: A diagnostic instrument, or an experimental tool? Chest 127: 2254–2263

    Article  PubMed  Google Scholar 

  15. Bezemer R, Lima A, Myers D, et al (2009) Assessment of tissue oxygen saturation during a vascular occlusion test using near-infrared spectroscopy: the role of probe spacing and measurement site studied in healthy volunteers. Crit Care 13 (Suppl 5): S4

    Article  Google Scholar 

  16. Creteur J, Carollo T, Soldati G, Büchele G, Backer D, Vincent J-L (2007) The prognostic value of muscle StO2 in septic patients. Intensive Care Med 33: 1549–1556

    Article  PubMed  Google Scholar 

  17. Doerschug KC, Delsing AS, Schmidt GA, Haynes WG (2007) Impairments in microvascular reactivity are related to organ failure in human sepsis. Am J Physiol Heart Circ Physiol 293: H1065–H1071

    Article  PubMed  CAS  Google Scholar 

  18. Leone M, Blidi S, Antonini F, et al (2009) Oxygen tissue saturation is lower in nonsurvivors than in survivors after early resuscitation of septic shock. Anesthesiology 111: 366–371

    Article  PubMed  CAS  Google Scholar 

  19. Skarda DE, Mulier KE, Myers DE, Taylor JH, Beilman GJ (2007) Dynamic near-infrared spectroscopy measurements in patients with severe sepsis. Shock 27: 348–353

    Article  PubMed  CAS  Google Scholar 

  20. Georger J-F, Hamzaoui O, Chaari A, Maizel J, Richard C, Teboul JL (2010) Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by nearinfrared spectroscopy in severely hypotensive septic patients. Intensive Care Med 36: 1882–1889

    Article  PubMed  CAS  Google Scholar 

  21. Duranteau J, Sitbon P, Teboul JL, et al (1999) Effects of epinephrine, norepinephrine, or the combination of norepinephrine and dobutamine on gastric mucosa in septic shock. Crit Care Med 27: 893–900

    Article  PubMed  CAS  Google Scholar 

  22. Jin X, Weil MH, Sun S, Tang W, Bisera J, Mason EJ (1998) Decreases in organ blood flows associated with increases in sublingual PCO2 during hemorrhagic shock. J Appl Physiol 85: 2360–2364

    PubMed  CAS  Google Scholar 

  23. Dubin A, Murias G, Estenssoro E, et al (2002) Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia. Crit Care 6: 514–520

    Article  PubMed  Google Scholar 

  24. Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL (2006) Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med 32: 516–523

    Article  PubMed  Google Scholar 

  25. Vallet B, Teboul JL, Cain S, Curtis S (2000) Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol 89: 1317–1321

    PubMed  CAS  Google Scholar 

  26. Vallee F, Mateo J, Dubreuil G, et al (2010) Cutaneous ear lobe Pco at 37 degrees C to evaluate microperfusion in patients with septic shock. Chest 138: 1062–1070

    Article  PubMed  Google Scholar 

  27. Schneider A, Johnson L, Goodwin M, Schelleman A, Bellomo R (2011) Bench-to-bedside review: Contrast enhanced ultrasonography-a promising technique to assess renal perfusion in the ICU. Crit Care 15: 157

    Article  PubMed  Google Scholar 

  28. Schneider AG, Hofmann L, Wuerzner G, et al (2012) Renal perfusion evaluation with contrast-enhanced ultrasonography. Nephrol Dial Transplant (in press)

    Google Scholar 

  29. Larsen LPS (2010) Role of contrast enhanced ultrasonography in the assessment of hepatic metastases: A review. World J Hepatol 2: 8–15

    PubMed  Google Scholar 

  30. Kishimoto N, Mori Y, Nishiue T, et al (2003) Renal blood flow measurement with contrastenhanced harmonic ultrasonography: evaluation of dopamine-induced changes in renal cortical perfusion in humans. Clin Nephrol 59: 423–428

    PubMed  CAS  Google Scholar 

  31. Schwenger V, Korosoglou G, Hinkel UP, et al (2006) Real-time contrast-enhanced sonography of renal transplant recipients predicts chronic allograft nephropathy. Am J Transplant 6: 609–615

    Article  PubMed  CAS  Google Scholar 

  32. Nordström CH (2009) Cerebral energy metabolism and microdialysis in neurocritical care. Childs Nerv Syst 26: 465–472

    Article  Google Scholar 

  33. Rao GS, Durga P (2011) Changing trends in monitoring brain ischemia: from intracranial pressure to cerebral oximetry. Curr Opin Anaesthesiol 24: 487–494

    Article  PubMed  Google Scholar 

  34. Sarrafzadeh AS, Sakowitz OW, Callsen TA, Lanksch WR, Unterberg AW (2002) Detection of secondary insults by brain tissue pO2 and bedside microdialysis in severe head injury. Acta Neurochir Suppl 81: 319–321

    PubMed  CAS  Google Scholar 

  35. Kurtz P, Schmidt JM, Claassen J, et al (2010) Anemia is associated with metabolic distress and brain tissue hypoxia after subarachnoid hemorrhage. Neurocrit Care 13: 10–16

    Article  PubMed  CAS  Google Scholar 

  36. Ellebaek Pedersen M, Qvist N, et al (2009) Peritoneal microdialysis. Early diagnosis of anastomotic leakage after low anterior resection for rectosigmoid cancer. Scand J Surg 98: 148–154

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tanaka, S., Harrois, A., Duranteau, J. (2012). Fluid Resuscitation: Think Microcirculation. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2012. Annual Update in Intensive Care and Emergency Medicine, vol 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25716-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25716-2_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25715-5

  • Online ISBN: 978-3-642-25716-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics