Skip to main content

Respiratory Variation in the Perioperative and Critical Care Settings

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2012

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM,volume 2012))

  • 2256 Accesses

Abstract

The American Society of Anesthesiologists’ (ASA) Standards for Basic Anesthetic Monitoring recommend blood pressure monitoring every 5 minutes for all patients under general anesthesia. The selection of blood pressure as a standard monitoring tool is not based on physiologic rationale (indeed, physiologic studies suggest there is essentially no relationship between mean arterial pressure ([MAP] and global delivery of oxygen [DO2] [1]) or evidence of improved outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barash PG (2006) Clinical Anesthesia, 5th ed.: Lippincott Williams and Wilkins, Philadelphia, p 303

    Google Scholar 

  2. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94: 1176–1186

    Article  PubMed  CAS  Google Scholar 

  3. Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377

    Article  PubMed  CAS  Google Scholar 

  4. Gan TJ, Soppitt A, Maroof M, et al (2002) Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 97: 820–826

    Article  PubMed  Google Scholar 

  5. Michard F (2005) Changes in arterial pressure during mechanical ventilation. Anesthesiology 103: 419–428

    Article  PubMed  Google Scholar 

  6. Fauci A, Braunwald E, Kasper DL, et al (2008) Harrison’s Principles of Internal Medicine. 17th ed. McGraw-Hill Professional, Columbus

    Google Scholar 

  7. Cannesson M, Aboy M, Hofer CK, Rehman M (2011) Pulse pressure variation: where are we today? J Clin Monit Comput 25: 45–56

    Article  PubMed  Google Scholar 

  8. Morgan BC, Martin WE, Hornbein TF, Crawford EW, Guntheroth WG.(1966) Hemodynamic effects of intermittent positive pressure respiration. Anesthesiology 27: 584–590

    Article  PubMed  CAS  Google Scholar 

  9. Katz L, Guauchat H (1924) Observation of pulsus paradoxus (with special reference to pericardial effusions). II. Experimental. Arch Intern Med 33: 371–393

    Article  Google Scholar 

  10. Massumi RA, Mason DT, Vera Z, Zelis R, Otero J, Amsterdam EA (1973) Reversed pulsus paradoxus. N Engl J Med 289: 1272–1275

    Article  PubMed  CAS  Google Scholar 

  11. Rick JJ, Burke SS (1978) Respirator paradox. South Med J 71: 1376–1378

    Article  PubMed  CAS  Google Scholar 

  12. Perel A, Pizov R, Cotev S (1987) Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67: 498–502

    Article  PubMed  CAS  Google Scholar 

  13. Szold A, Pizov R, Segal E, Perel A (1989) The effect of tidal volume and intravascular volume state on systolic pressure variation in ventilated dogs. Intensive Care Med 15: 368–371

    Article  PubMed  CAS  Google Scholar 

  14. Preisman S, DiSegni E, Vered Z, Perel A (2002) Left ventricular preload and function during graded haemorrhage and retranfusion in pigs: analysis of arterial pressure waveform and correlation with echocardiography. Br J Anaesth 88: 716–718

    Article  PubMed  CAS  Google Scholar 

  15. Michard F, Boussat S, Chemla D, et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162: 134–138

    Article  PubMed  CAS  Google Scholar 

  16. Marik PE, Cavallazzi R, Vasu T, Hirani A (2009) Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 37: 2642–2647

    Article  PubMed  Google Scholar 

  17. Hofer CK, Muller SM, Furrer L, Klaghofer R, Genoni M, Zollinger A (2005) Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest 128: 848–854

    Article  PubMed  Google Scholar 

  18. Cannesson M, Le Manach Y, Hofer CK, et al (2011) Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: A “gray zone” approach. Anesthesiology 115: 231–241

    Article  PubMed  Google Scholar 

  19. Daudel F, Tuller D, Krahenbuhl S, Jakob SM, Takala J (2011) Pulse pressure variation and volume responsiveness during acutely increased pulmonary artery pressure: an experimental study. Crit Care 14: R122

    Article  Google Scholar 

  20. Wyler von Ballmoos M, Takala J, Roeck M, et al (2011) Pulse-pressure variation and hemodynamic response in patients with elevated pulmonary artery pressure: a clinical study. Crit Care 14: R111

    Article  Google Scholar 

  21. Suehiro K, Okutani R (2010) Stroke volume variation as a predictor of fluid responsiveness in patients undergoing one-lung ventilation. J Cardiothorac Vasc Anesth 24: 772–775

    Article  PubMed  Google Scholar 

  22. Lee JH, Jeon Y, Bahk JH, et al (2011) Pulse pressure variation as a predictor of fluid responsiveness during one-lung ventilation for lung surgery using thoracotomy: randomised controlled study. Eur J Anaesthesiol 28: 39–44

    Article  PubMed  Google Scholar 

  23. Suehiro K, Okutani R (2011) Influence of tidal volume for stroke volume variation to predict fluid responsiveness in patients undergoing one-lung ventilation. J Anesth 25: 777–780

    Article  PubMed  Google Scholar 

  24. Rooke GA, Schwid HA, Shapira Y (1995) The effect of graded hemorrhage and intravascular volume replacement on systolic pressure variation in humans during mechanical and spontaneous ventilation. Anesth Analg 80: 925–932

    PubMed  CAS  Google Scholar 

  25. Heenen S, De Backer D, Vincent JL (2006) How can the response to volume expansion in patients with spontaneous respiratory movements be predicted? Crit Care 10: R102

    Article  PubMed  Google Scholar 

  26. Wyffels PA, Sergeant P, Wouters PF (2010) The value of pulse pressure and stroke volume variation as predictors of fluid responsiveness during open chest surgery. Anaesthesia 65: 704–709

    Article  PubMed  CAS  Google Scholar 

  27. de Waal EE, Rex S, Kruitwagen CL, Kalkman CJ, Buhre WF (2009) Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions. Crit Care Med 37: 510–515

    Article  PubMed  Google Scholar 

  28. Soncini M, Manfredi G, Redaelli A, et al (2002) A computerized method to measure systolic pressure variation (SPV) in mechanically ventilated patients. J Clin Monit Comput 17: 141–146

    Article  PubMed  Google Scholar 

  29. Aboy M, McNames J, Thong T, Phillips CR, Ellenby MS, Goldstein B (2004) A novel algorithm to estimate the pulse pressure variation index deltaPP. IEEE Trans Biomed Eng 51: 2198–203

    Google Scholar 

  30. McGee WT (2009) A simple physiologic algorithm for managing hemodynamics using stroke volume and stroke volume variation: physiologic optimization program. J Intensive Care Med 24: 352–360

    Article  PubMed  Google Scholar 

  31. Hofer CK, Senn A, Weibel L, Zollinger A (2008) Assessment of stroke volume variation for prediction of fluid responsiveness using the modified FloTrac and PiCCOplus system. Crit Care 12: R82

    Article  PubMed  Google Scholar 

  32. Cannesson M, Attof Y, Rosamel P, et al (2007) Respiratory variations in pulse oximetry plethysmographic waveform amplitude to predict fluid responsiveness in the operating room. Anesthesiology 106: 1105–1111

    Article  PubMed  Google Scholar 

  33. Cannesson M, Desebbe O, Rosamel P, et al (2008) Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth 101: 200–206

    Article  PubMed  CAS  Google Scholar 

  34. Keller G, Cassar E, Desebbe O, Lehot JJ, Cannesson M (2008) Ability of pleth variability index to detect hemodynamic changes induced by passive leg raising in spontaneously breathing volunteers. Crit Care 12: R37

    Article  PubMed  Google Scholar 

  35. Zimmermann M, Feibicke T, Keyl C, et al (2010) Accuracy of stroke volume variation compared with pleth variability index to predict fluid responsiveness in mechanically ventilated patients undergoing major surgery. Eur J Anaesthesiol 27: 555–61

    PubMed  CAS  Google Scholar 

  36. Tsuchiya M, Yamada T, Asada A (2010) Pleth variability index predicts hypotension during anesthesia induction. Acta Anaesthesiol Scand 54: 596–602

    Article  PubMed  CAS  Google Scholar 

  37. Landsverk SA, Hoiseth LO, Kvandal P, Hisdal J, Skare O, Kirkeboen KA (2008) Poor agreement between respiratory variations in pulse oximetry photoplethysmographic waveform amplitude and pulse pressure in intensive care unit patients. Anesthesiology 109: 849–855

    Article  PubMed  Google Scholar 

  38. Broch O, Bein B, Gruenewald M, et al (2011) Accuracy of the pleth variability index to predict fluid responsiveness depends on the perfusion index. Acta Anaesthesiol Scand 55: 686–693

    Article  PubMed  CAS  Google Scholar 

  39. Choi DY, Kwak HJ, Park HY, Kim YB, Choi CH, Lee JY (2010) Respiratory variation in aortic blood flow velocity as a predictor of fluid responsiveness in children after repair of ventricular septal defect. Pediatr Cardiol 31: 1166–1170

    Article  PubMed  Google Scholar 

  40. Renner J, Broch O, Gruenewald M, et al (2011) Non-invasive prediction of fluid responsiveness in infants using pleth variability index. Anaesthesia 66: 582–589

    Article  PubMed  CAS  Google Scholar 

  41. Lamia B, Ochagavia A, Monnet X, Chemla D, Richard C, Teboul JL (2007) Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med 33: 1125–1132

    Article  PubMed  Google Scholar 

  42. Cannesson M, Keller G, Desebbe O, Lehot JJ (2010) Relations between respiratory changes in R-wave amplitude and arterial pulse pressure in mechanically ventilated patients. J Clin Monit Comput 24: 203–207

    Article  PubMed  Google Scholar 

  43. Ma HT, Zhang YT (2006) Spectral analysis of pulse transit time variability and its coherence with other cardiovascular variabilities. Conf Proc IEEE Eng Med Biol Soc 1: 6442–6445

    PubMed  Google Scholar 

  44. Tang CH, Chan GS, Middleton PM, et al (2010) Pulse transit time variability analysis in an animal model of endotoxic shock. Conf Proc IEEE Eng Med Biol Soc 2010: 2849–2852

    PubMed  Google Scholar 

  45. Maisch S, Bohm SH, Sola J, et al (2011) Heart-lung interactions measured by electrical impedance tomography. Crit Care Med 39: 2173–2176

    Article  PubMed  Google Scholar 

  46. Gurgel ST, do Nascimento P Jr (2011) Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg 112: 1384–1391

    Article  PubMed  Google Scholar 

  47. Hamilton MA, Cecconi M, Rhodes A (2011) A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 112: 1392–402

    Article  PubMed  Google Scholar 

  48. Lopes MR, Oliveira MA, Pereira VO, Lemos IP, Auler JO Jr, Michard F (2007) Goaldirected fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care 11: R100

    Article  PubMed  Google Scholar 

  49. Benes J, Chytra I, Altmann P, et al (2010) Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care 14: R118

    Article  PubMed  Google Scholar 

  50. Forget P, Lois F, de Kock M (2010) Goal-directed fluid management based on the pulse oximeter-derived pleth variability index reduces lactate levels and improves fluid management. Anesth Analg 111: 910–914

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thiele, R.H., Raphael, J., Shaw, A.D. (2012). Respiratory Variation in the Perioperative and Critical Care Settings. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2012. Annual Update in Intensive Care and Emergency Medicine, vol 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25716-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25716-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25715-5

  • Online ISBN: 978-3-642-25716-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics