Skip to main content

The Neuroendocrine Axis: The Nervous System and Inflammation

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2012

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM,volume 2012))

  • 2321 Accesses

Abstract

Inflammation is the physiological answer of the organism to damage affecting its integrity, such as infection or trauma. In inflammation, cells of the immune system release cytokines and other mediators, which contribute to the destruction of bacteria and tissue repair. We distinguish here between pro-inflammatory cytokines, e.g., interleukin-1 (IL-1), IL-6 and tumor necrosis factor (TNF)- a, and anti-inflammatory cytokines, e.g., IL-10 and IL-4. Local mechanisms regulate the extent of the inflammatory answer needed to remove the source of the damage and to maintain homeostasis. Humoral as well as neuronal mediators contribute to the regulation of inflammation. Humoral anti-inflammatory mediators, e.g., IL-10 and glucocorticoids, inhibit the release or effect of pro-inflammatory cytokines whereas lipoxins and resolvins contribute to tissue repair. Humoral mediators reach their target cells in distant organs by diffusion or transport by blood flow. Substances which are released by nerves, e.g., norepinephrine and acetylcholine, reach specific cell groups of distant organs rapidly [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosas-Ballina M, Tracey KJ (2009) Cholinergic control of inflammation. J Intern Med 265: 663–679

    Article  PubMed  CAS  Google Scholar 

  2. Sternberg E (2006) Neural regulator of innate immunity: A coordinated nonspecific host response to pathogens. Nat Rev Immunol 6: 318–328

    Article  PubMed  CAS  Google Scholar 

  3. Dantzer R, O’Connor JC, Freund GC, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: When the immune subjugates the brain. Nat Rev Neurosci 9: 46–56

    Article  PubMed  CAS  Google Scholar 

  4. Woiciechowsky C, Schoning B, Lanksch WR, Volk H-D, Docke WD (1999). Mechanisms of brain-mediated systemic anti-inflammatory syndrome causing immunodepression. J Mol Med 77: 769–780

    Article  PubMed  CAS  Google Scholar 

  5. Ebersoldt M, Sharshar T, Annane D (2007) Sepsis associated delirium. Intensive Care Med 33: 941–950

    Article  PubMed  Google Scholar 

  6. Kumar V, Sharma A (2010) Is neuroimmunomodulation a future therapeutic approach for sepsis? Int Immunopharmacol 10: 9–17

    Article  PubMed  CAS  Google Scholar 

  7. Madden K, Sanders V, Felten D (1995) Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annu Rev Pharmacol Toxicol 35: 417–448

    Article  PubMed  CAS  Google Scholar 

  8. Weihe E, Nohr D, Michel S, et al (1991) Molecular anatomy of the neuro-immune connection. Int J Neurosci 59: 1–23

    Article  PubMed  CAS  Google Scholar 

  9. John C, Buckingham J (2003) Cytokines: Regulation of hypothalamo-pituitary-adrenocortical axis. Curr Opin Pharmacol 3: 378–384

    Article  Google Scholar 

  10. Woiciechowsky C, Ruprecht S, Docke WD, Volk HD (2000) Role of the sympathetic nervous system and hypothalamic-pituitary-adrenal axis in brain-mediated compensatory anti-inflammatory response. Biomed Rev 11: 29–38

    CAS  Google Scholar 

  11. Dunn A, Wang J, Ando T (1999) Effects of cytokines on cerebral neurotransmission. Comparison with the effects of stress. Adv Exp Med Biol 461: 117–127

    Article  PubMed  CAS  Google Scholar 

  12. Zhang J, Swiergiel AH, Palamarchouk VS, Dunn A (1998) Intracerebroventricular infusion of CRF increases extracellular concentrations of norepinephrine in the hippocampus and cortex as determined by in vivo voltammetry. Brain Res Bull 47: 277–284

    Article  PubMed  CAS  Google Scholar 

  13. Berkenbosch F, de Goeij D, del Rey AE, Besedovsky HO (1989) Neuroendocrine sympathetic and metabolic responses induced by interleukin-1. Neuroendocrinology 50: 570–576

    Article  PubMed  CAS  Google Scholar 

  14. Shimizu N, Hori T, Nakane H (1994) An interleukin-1beta-induced noradrenaline release in the spleen is mediated by brain corticotropin-releasing factor. Brain Behav Immun 8: 14–23

    Article  PubMed  CAS  Google Scholar 

  15. Elenkov I, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve — an integrative interface between to super systems: The brain and the immune system. Pharmacol Rev 52: 595–638

    PubMed  CAS  Google Scholar 

  16. Miksa M, Das P, Zhou M, et al (2009) Pivotal role of the a2A-adrenoceptor in producing inflammation and organ injury in a rat model of sepsis. PLoS ONE 4:e5504

    Article  PubMed  Google Scholar 

  17. Spengler R, Allen RM, Demick DG, Strieter RM, Kunkel SL (1990) Stimulation of alphaadrenergic receptor augments the production of macrophage-derived tumor necrosis factor. J Immunol 145: 1430–1434

    PubMed  CAS  Google Scholar 

  18. Hasko G, Nemeth ZH, Szabo C, Zsilia G, Salzman AL, Vizi ES (1998) Isoproterenol inhibits IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages. Brain Res Bull 45: 183–187

    Article  PubMed  CAS  Google Scholar 

  19. Siegmund B, Eigler A, Hartmann G, Hacker U, Endres S (1998) Adrenaline enhances LPS-induced IL-10 synthesis: Evidence for protein kinase A-mediated pathway. Int J Immunopharmacol 20: 57–69

    Article  PubMed  CAS  Google Scholar 

  20. Bornstein S, Chrousos G (1998) Adrenocorticotrophin (ACTH)-and non-ACTH-mediated regulation of adrenal cortex: neural and immune inputs. J Clin Endocrinol Metab 84: 1729–1736

    Article  Google Scholar 

  21. Matejec R, Löcke G, Mühling J, et al (2008) Release of melanotroph-and corticotrophtype proopiomelanocortin derivates in blood after administration of corticotropin-releasing hormone in patients with septic shock without adrenocortical insufficiency. Shock 31: 553–560

    Article  Google Scholar 

  22. Munford R, Levine J (2001) The crucial role of the systemic response in the innate (nonadaptive) host defense. J Endotoxin Res 7: 327–332

    PubMed  CAS  Google Scholar 

  23. Besedovsky H, Del RE, Sorkin E, Dinarello C (1986) Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233: 652–654

    Article  PubMed  CAS  Google Scholar 

  24. Tracey KJ (2002) The inflammatory reflex. Nature 420: 853–859

    Article  PubMed  CAS  Google Scholar 

  25. Borovikova L, Ivanova S, Zhang M, et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405: 458–462

    Article  PubMed  CAS  Google Scholar 

  26. Huston J, Gallowitsch-Puerta M, Ochani M, et al (2007) Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med 35: 2762–2768

    Article  PubMed  Google Scholar 

  27. Wang H, Yu M, Ochani M, et al (2003) Nicotinic actylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421: 384–388

    Article  PubMed  CAS  Google Scholar 

  28. Huston J, Ochani M, Rosas-Ballina M, et al (2008) Splenectomy protects against sepsis lethality and reduces serum HMGB1 levels. J Immunol 181: 3535–3539

    PubMed  CAS  Google Scholar 

  29. Hofer S, Eisenbach C, Lukic IK, et al (2008) Pharmacologic cholinesterase inhibition improves survival in experimental sepsis. Crit Care Med 36: 404–408

    Article  PubMed  CAS  Google Scholar 

  30. Rittirsch D, Flierl M, Ward P (2008) Harmful molecular mechanisms in sepsis. Nature 8: 776–787

    CAS  Google Scholar 

  31. Blalock J (1984) The immune system as a sensory organ. J Immunol 132: 1067–1070

    PubMed  CAS  Google Scholar 

  32. Blalock J (2005) The immune system as the sixth sense. J Intern Med 257: 126–138

    Article  PubMed  CAS  Google Scholar 

  33. Goehler L, Gaykema RP, Hammack SE, Maier SF, Watkins LR (1998) Interleukin-1 induces c-Fos immunoreactivity in primary afferent neurons of the vagus nerve. Brain Res 804: 306–310

    Article  PubMed  CAS  Google Scholar 

  34. Goehler L, Relton JK, Dripps D, et al (1997) Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: A possible mechanism for immune-to-brain communication. Brain Res Bull 43: 357–364

    Article  PubMed  CAS  Google Scholar 

  35. Maier SF, Goehler LE, Fleshner M. Watkins LR (1998) The role of the vagus nerve in cytokine-to-brain communication. Ann NY Acad Sci 840: 289–300

    Article  PubMed  CAS  Google Scholar 

  36. Huston J, Ochani M, Rosas-Ballina M, et al (2006) Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med 203: 1623–1628

    Article  PubMed  CAS  Google Scholar 

  37. Rosas-Ballina M, Ochani M, et al (2008) Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci USA 105: 11008–11013

    Article  PubMed  CAS  Google Scholar 

  38. Bellinger D, Felten SY, Lorton D, Felten DL (1989) Origin of noradrenergic innervation of the spleen in rats. Brain Behav Immun 3: 291–311

    Article  PubMed  CAS  Google Scholar 

  39. Cano G, Sved AF, Rinaman L, Rabin BS, Card JP (2001) Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J Comp Neurol 439: 1–18

    Article  PubMed  CAS  Google Scholar 

  40. Nance D, Burns J (1989) Innervation of the spleen in the rat: Evidence for absence of afferent innervation. Brain Behav Immun 3: 281–290

    Article  PubMed  CAS  Google Scholar 

  41. Klein R, Wilson SP, Dzielak DJ, Yang WH, Viveros OH (1982) Opioid peptides and noradrenaline co-exist in large dense-cored vesicles from sympathetic nerve. Neuroscience 7: 2255–2261

    Article  PubMed  CAS  Google Scholar 

  42. Felten D, Ackermann KD, Wiegand SJ, Felten SY (1987) Noradrenergic sympathetic innervation of the spleen: I. Nerve fibres associate with lymphocytes and macrophages in specific compartments of the splenic white pulp. J Neurosci Res 18: 28–36

    Article  PubMed  CAS  Google Scholar 

  43. Deng J, Muthu K, Gamelli R, Shankar R, Jones SB (2004) Adrenergic modulation of splenic macrophage cytokine release in polymicrobial sepsis. Am J Physiol Cell Physiol 287:C730–736

    Article  PubMed  CAS  Google Scholar 

  44. Pena G, Cai B, Ramos L, Vida G, Deitch EA, Ulloa L (2011) Cholinergic regulatory lymphocytes re-establish neuromodulation of innate immune responses in sepsis. J Immunol 187: 718–725

    Article  PubMed  CAS  Google Scholar 

  45. Vida G, Pena G, Kanashiro A, et al (2011) ß2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB J 25: 447–4485

    Article  Google Scholar 

  46. Bulloch K, Damavandy T, Badamchian M (1994) Characterization of choline O-actyltransferase (ChAT) in the BALB/C mouse spleen. Int J Neurosci 76: 141–149

    Article  PubMed  CAS  Google Scholar 

  47. Lips K, König P, Schatzle K, et al (2006) Coexpression and spatial association of nicotinic acytlcholine receptor subunit alpha7 and alpha 10 in rat sympathetic neurons. J Mol Neurosci 30: 15–16

    Article  PubMed  CAS  Google Scholar 

  48. Wang H, Liao H, Ochani M, et al (2004) Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 10: 1216–1221

    Article  PubMed  CAS  Google Scholar 

  49. Peter C, Schmidt K, Hofer S, et al (2010) Effects of physostigmine on microcirculatory alterations during experimental endotoxemia. Shock 33: 405–411

    Article  PubMed  CAS  Google Scholar 

  50. Ghia J, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM (2006) The vagus nerve: A tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 131: 1122–1130

    Article  PubMed  Google Scholar 

  51. van Westerloo DJ, Giebelen IA, Florquin S, et al (2006) The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology 130: 1822–1830

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weismüller, K., Weigand, M.A., Hofer, S. (2012). The Neuroendocrine Axis: The Nervous System and Inflammation. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2012. Annual Update in Intensive Care and Emergency Medicine, vol 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25716-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25716-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25715-5

  • Online ISBN: 978-3-642-25716-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics