Skip to main content

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM,volume 2012))

  • 2271 Accesses

Abstract

A biomarker is “any substance, structure or process that can be measured in the body or its products and influence or predict the incidence or outcome of disease” [1]. A biomarker can be useful for several purposes, including diagnosis, prognostication, identification of patients at risk, or prediction of response to therapy. In the case of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), a biomarker may help answer one or several of the following questions: How likely is this at risk patient to develop ALI/ARDS? Does this patient have hyperpermeability or cardiogenic pulmonary edema? What is the mortality of this patient with ALI/ARDS? How is this patient responding to therapy?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. WHO Task Group on Environmental Health Criteria for Biomarkers in Risk Assessment: Validity and Validation (2001) International Programme on Chemical Safety. Biomarkers in risk assessment: validity and validation (EHC 222). Available at: http://www.inchem.org/documents/ehc/ehc/ehc222.htm. Accessed October, 2011

    Google Scholar 

  2. Barnett N, Ware LB (2011) Biomarkers in acute lung injury — Marking forward progress. Crit Care Clin 27: 661–683

    Article  PubMed  CAS  Google Scholar 

  3. Bernard GR, Artigas A, Brigham KL, et al (1994) Report of the American-European consensus conference on ARDS: definitions, mechanisms, relevant outcomes and clinical trial coordination. The Consensus Committee. Intensive Care Med 20: 225–232

    Article  PubMed  CAS  Google Scholar 

  4. Katzenstein AL, Bloor CM, Leibow AA (1976) Diffuse alveolar damage—the role of oxygen, shock, and related factors. Am J Pathol 85: 209–228

    PubMed  CAS  Google Scholar 

  5. Matute-Bello G, Downey G, Moore BB (2011) Acute Lung Injury in Animals Study Group. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 44: 725–738

    Article  PubMed  CAS  Google Scholar 

  6. Parsons PE, Moss M, Vannice JL, et al (1997) Circulating IL-1ra and IL-10 levels are increased but do not predict the development of acute respiratory distress syndrome in at-risk patients. Am J Respir Crit Care Med 155: 1469–1473

    Article  PubMed  CAS  Google Scholar 

  7. Bouros D, Alexandrakis MG, Antoniou KM, et al (2004) The clinical significance of serum and bronchoalveolar lavage inflammatory cytokines in patients at risk for Acute Respiratory Distress Syndrome. BMC Pulm Med 17: 4–6

    Google Scholar 

  8. Suter PM, Suter S, Girardin E, et al (1992) High bronchoalveolar levels of tumor necrosis factor and its inhibitors, interleukin-1, interferon, and elastase, in patients with adult respiratory distress syndrome after trauma, shock, or sepsis. Am Rev Respir Dis 145: 1016–1022

    Article  PubMed  CAS  Google Scholar 

  9. Parsons PE, Eisner MD, Thompson BT, et al (2005) Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med 33: 1–6

    Article  PubMed  CAS  Google Scholar 

  10. Chen CY, Yang KY, Chen MY, et al (2009) Decoy receptor 3 levels in peripheral blood predict outcomes of acute respiratory distress syndrome. Am J Respir Crit Care Med 180: 751–760

    Article  PubMed  CAS  Google Scholar 

  11. Villar J, Perez-Mendez L, Espinosa E, et al (2009) Serum lipopolysaccharide binding protein levels predict severity of lung injury and mortality in patients with severe sepsis. PLoS One 4: e6818

    Article  PubMed  Google Scholar 

  12. Cohen MJ, Brohi K, Calfee CS, et al (2009) Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit Care 13: R174

    Article  PubMed  Google Scholar 

  13. Prabhakaran P, Ware LB, White KE, et al (2003) Elevated levels of plasminogen acti-vator inhibitor-1 in pulmonary edema fluid are associated with mortality in acute lung injury. Am J Physiol Lung Cell Mol Physiol 285: L20–28

    PubMed  CAS  Google Scholar 

  14. Ware LB, Matthay MA, Parsons PE, et al (2007) Pathogenetic and prognostic signifi-cance of altered coagulation and fibrinolysis in acute lung injury/acute respiratory distress syndrome. Crit Care Med 35: 1821–1828

    Article  PubMed  Google Scholar 

  15. Uchida T, Shirasawa M, Ware LB, et al (2006) Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. Am J Respir Crit Care Med 173: 1008–1015

    Article  PubMed  CAS  Google Scholar 

  16. Fremont RD, Koyama T, Calfee CS, et al (2010) Acute lung injury in patients with traumatic injuries: utility of a panel of biomarkers for diagnosis and pathogenesis. J Trauma 68: 1121–1127

    Article  PubMed  Google Scholar 

  17. Calfee CS, Ware LB, Eisner MD, et al (2008) Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury. Thorax 63: 1083–1089

    Article  PubMed  CAS  Google Scholar 

  18. Greene KE, Wright JR, Steinberg KP, et al (1999) Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med 160: 1843–1850

    Article  PubMed  CAS  Google Scholar 

  19. Greene KE, Ye S, Mason RJ, et al (1999) Serum surfactant protein-A levels predict development of ARDS in at-risk patients. Chest 116: 90S–91S

    Article  PubMed  CAS  Google Scholar 

  20. Bersten AD, Hunt T, Nicholas TE, et al (2001) Elevated plasma surfactant protein-B predicts development of acute respiratory distress syndrome in patients with acute respiratory failure. Am J Respir Crit Care Med 164: 648–652

    Article  PubMed  CAS  Google Scholar 

  21. Eisner MD, Parsons P, Matthay MA, et al (2003) Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax 58: 983–988

    Article  PubMed  CAS  Google Scholar 

  22. Determann RM, Millo JL, Waddy S, et al (2009) Plasma CC16 levels are associated with development of ALI/ARDS in patients with ventilator-associated pneumonia: a retrospective observational study. BMC Pulm Med 9: 49

    Article  PubMed  Google Scholar 

  23. Kropski JA, Fremont RD, Calfee CS, et al (2009) Clara cell protein (CC16), a marker of lung epithelial injury, is decreased in plasma and pulmonary edema fluid from patients with acute lung injury. Chest 135: 1440–1447

    Article  PubMed  CAS  Google Scholar 

  24. Katayama M, Ishizaka A, Sakamoto M, et al (2010) Laminin gamma2 fragments are increased in the circulation of patients with early phase acute lung injury. Intensive Care Med 36: 479–486

    Article  PubMed  CAS  Google Scholar 

  25. Gallagher DC, Parikh SM, Balonov K, et al (2008) Circulating angiopoietin 2 correlates with mortality in a surgical population with acute lung injury/adult respiratory distress syndrome. Shock 29: 656–661

    PubMed  CAS  Google Scholar 

  26. van der Heijden M, van Nieuw Amerongen GP, Koolwijk P, et al (2008) Angiopoietin-2, permeability oedema, occurrence and severity of ALI/ARDS in septic and non-septic critically ill patients. Thorax 63: 903–909

    Article  PubMed  Google Scholar 

  27. Rubin DB, Wiener-Kronish JP, Murray JF, et al (1990) Elevated von Willebrand factor antigen is an early plasma predictor of acute lung injury in nonpulmonary sepsis syndrome. J Clin Invest 86: 474–480

    Article  PubMed  CAS  Google Scholar 

  28. Ware LB, Eisner MD, Thompson BT, et al (2004) Significance of von Willebrand factor in septic and nonseptic patients with acute lung injury. Am J Respir Crit Care Med 170: 766–772

    Article  PubMed  Google Scholar 

  29. Donnelly SC, Haslett C, Dransfield I, et al (1994) Role of selectins in development of adult respiratory distress syndrome. Lancet 344: 215–219

    Article  PubMed  CAS  Google Scholar 

  30. Okajima K, Harada N, Sakurai G, et al (2006) Rapid assay for plasma soluble E-selectin predicts the development of acute respiratory distress syndrome in patients with systemic inflammatory response syndrome. Transl Res 148: 295–300

    Article  PubMed  CAS  Google Scholar 

  31. Conner ER, Ware LB, Modin G, et al (1999) Elevated pulmonary edema fluid concentrations of soluble intercellular adhesion molecule-1 in patients with acute lung injury: biological and clinical significance. Chest 116: 83S–84S

    Article  PubMed  CAS  Google Scholar 

  32. Calfee CS, Eisner MD, Parsons PE, et al (2009) Soluble intercellular adhesion molecule-1 and clinical outcomes in patients with acute lung injury. Intensive Care Med 35: 248–257

    Article  PubMed  CAS  Google Scholar 

  33. Ware LB, Fremont RD, Bastarache JA, et al (2010) Determining the aetiology of pulmonary oedema by the oedema fluid-to-plasma protein ratio. Eur Respir J 35: 331–337

    Article  PubMed  CAS  Google Scholar 

  34. Pugin J, Verghese G, Widmer MC, et al (1999) The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit Care Med 27: 304–312

    Article  PubMed  CAS  Google Scholar 

  35. Chesnutt AN, Matthay MA, Tibayan FA, et al (1997) Early detection of type III procollagen peptide in acute lung injury. Pathogenetic and prognostic significance. Am J Respir Crit Care Med 156: 840–845

    Article  PubMed  CAS  Google Scholar 

  36. Ware LB, Koyama T, Billheimer DD, et al (2010) Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest 137: 288–296

    Article  PubMed  CAS  Google Scholar 

  37. Calfee CS, Ware L, Glidden DV, et al. (2011) Use of risk reclassification with multiple biomarkers improves mortality prediction in acute lung injury. Crit Care Med 39: 711–717

    Article  PubMed  CAS  Google Scholar 

  38. Gao L, Barnes KC (2009) Recent advances in genetic predisposition to clinical acute lung injury. Am J Physiol Lung Cell Mol Physiol 296: L713–725

    Article  PubMed  CAS  Google Scholar 

  39. Lam E, dos Santos CC (2008) Advances in molecular acute lung injury/acute respiratory distress syndrome and ventilator-induced lung injury: the role of genomics, proteomics, bioinformatics and translational biology. Curr Opin Crit Care 14: 3–10

    Article  PubMed  Google Scholar 

  40. Christie JD, Wurfel MM, Keefe GE, et al (2010) Genome wide association (gwa) iden-tifies functional susceptibility loci for trauma-induced acute lung injury. Am J Respir Crit Care Med 181: A1205 (abst)

    Google Scholar 

  41. Meyer NJ, Li M, Shah CV, et al (2010) Large scale genotyping in an African American trauma population identifies angiopoeitin-2 variants associated with ALI. Am J Respir Crit Care Med 179: A3879 (abst)

    Google Scholar 

  42. Meyer NJ, Li M, Feng R, et al (2011) ANGPT2 genetic variant is associated with traumaassociated acute lung injury and altered plasma angiopoietin-2 isoform ratio. Am J Respir Crit Care Med 183: 1344–1353

    Article  PubMed  CAS  Google Scholar 

  43. Howrylak JA, Dolinay T, Lucht L, et al (2009) Discovery of the gene signature for acute lung injury in patients with sepsis. Physiol Genomics 37: 133–139

    Article  PubMed  CAS  Google Scholar 

  44. Schnapp LM, Donohoe S, Chen J, et al (2006) Mining the acute respiratory distress syndrome proteome: identification of the insulin-like growth factor (IGF)/IGF-binding protein-3 pathway in acute lung injury. Am J Pathol 169: 86–95

    Article  PubMed  CAS  Google Scholar 

  45. de Torre C, Ying SX, Munson PJ, et al (2006) Proteomic analysis of inflammatory biomarkers in bronchoalveolar lavage. Proteomics 6: 3949–3957

    Article  PubMed  Google Scholar 

  46. Serkova NJ, Van Rheen Z, Tobias M, Pitzer JE, Wilkinson JE, Stringer KA (2008) Utility of magnetic resonance imaging and nuclear magnetic resonance-based metabolomics for quantification of inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol 295: 152–161

    Article  Google Scholar 

  47. Stringer KA, Serkova NJ, Karnovsky A, Guire K, Paine R 3rd, Standiford TJ (2011) Metabolic consequences of sepsis-induced acute lung injury revealed by plasma “H-nuclear magnetic resonance quantitative metabolomics and computational analysis. Am J Physiol Lung Cell Mol Physiol 300: L4–L11

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lorente, J.A., Nin, N., Esteban, A. (2012). Biomarkers of Acute Lung Injury. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2012. Annual Update in Intensive Care and Emergency Medicine, vol 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25716-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25716-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25715-5

  • Online ISBN: 978-3-642-25716-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics