Skip to main content

A Domain Decomposition Method for Strongly Mixed Boundary Value Problems for the Poisson Equation

  • Conference paper
  • First Online:
Book cover Modeling, Simulation and Optimization of Complex Processes

Abstract

Recently we proposed a domain decomposition method (DDM) for solving a Dirichlet problem for a second order elliptic equation, where differently from other DDMs, the value of the normal derivative on an interface is updated from iteration to iteration. In this paper we develop a method for solving strongly mixed boundary value problems (BVPs), where boundary conditions are of different type on different sides of a rectangle and the transmission of boundary conditions occurs not only in vertices but also in one or several inner points of a side of the rectangle. Such mixed problems often arise in mechanics and physics. Our method reduces these strongly mixed BVPs to sequences of weakly mixed problems for the Poisson equation in the sense that on each side of the rectangle there is given only one type of boundary condition, which are easily solved by a program package, constructed recently by Vu (see [13]). The detailed investigation of the convergence of the method for a model problem is carried out. After that the method is applied to a problem of semiconductors. The convergence of the method is proved and numerical experiments confirm the efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arad M., Yosibash Z., Ben-Dor G., Yakhot A., Computing flux intensity factors by a boundary method for elliptic equations with singularities, Communications in Numerical Methods in Engineering, 14 (1998) 657–670.

    Article  MathSciNet  MATH  Google Scholar 

  2. Dang Q. A, Iterative method for solving strongly mixed boundary value problem, Proceedings of the First National Workshop on Fundamental and Applied Researches in Information Technology, Publ. House “Science and Technology”, Ha Noi, 2004.

    Google Scholar 

  3. Dang Q. A and Vu V.Q., A domain decomposition method for solving an elliptic boundary value problem, In: L. H. Son, W. Tutschke, S. Jain (eds.), Methods of Complex and Clifford Analysis (Proceedings of ICAM Hanoi 2004), SAS International Publications, Delhi, 2006, 309–319.

    Google Scholar 

  4. Dang Q. A, Vu V.Q., Experimental study of a domain decomposition method for mixed boundary value problems in domains of complex geometry, J. of Comp. Sci. and Cyber., 21(3) (2005) 216–229.

    Google Scholar 

  5. Georgiou G.C., Olson L., Smyrlis Y.S., A singular function boundary integral method for the Laplace equation, Communications in Numerical Methods in Engineering 12(2) (1996), 127–134.

    Article  MATH  Google Scholar 

  6. Mandal N., Advances in dual integral equations, Chapman & Hall, 1999.

    Google Scholar 

  7. Samarskii A.A., The Theory of Difference Schemes, New York, Marcel Dekker, 2001.

    Book  MATH  Google Scholar 

  8. Vabishchevich P.N., Iterative reduction of mixed boundary value problem to the Dirichlet problem, Differential Equations 25(7) (1989) 1177–1183 (Russian).

    Google Scholar 

  9. Blokhin A.M., Ibragimova A.S., Krasnikov N.Y., On a variant of the method of lines for the Poisson equation, Comput. Technologies, 12(2) (2007), 33-42 (Russian).

    Google Scholar 

  10. Romano V., 2D simulation of a silicon MESFET with a non-parabolic hydrodynamical model based on the maximum entropy principle, J. Comput. Phys. 176 (2002) 70–92.

    Article  MATH  Google Scholar 

  11. Savare G., Regularity and perturbation results for mixed second order elliptic problems, Commun. in partial differential equations, 22 (5 and 6), 1997, 869–899.

    Google Scholar 

  12. Snedon I., Mixed boundary value problems in potential theory. North. Hol. Pub. Amsterdam, 1966.

    Google Scholar 

  13. Vu V. Q., Results of application of algorithm for reducing computational amount in the solution of mixed elliptic boundary value problems, Proceedings of the National symposium “Development of tools of informatics for the help of teaching, researching and applying mathematics”, Hanoi, 2005, 247–256 (Vietnamese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang Quang A .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

A, D.Q., Quang, V.V. (2012). A Domain Decomposition Method for Strongly Mixed Boundary Value Problems for the Poisson Equation. In: Bock, H., Hoang, X., Rannacher, R., Schlöder, J. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25707-0_6

Download citation

Publish with us

Policies and ethics