Skip to main content

Superstable Models for Short-Duration Large-Domain Wave Propagation

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization of Complex Processes

Abstract

This paper introduces a superstable state-space representation suitable for modeling short-duration wave propagation dynamics in large domain. The true system dimensions and the number of output nodes can be extremely large, yet one is only interested in the propagation dynamics during a relatively short time duration. The superstable model can be interpreted as a finite-time version of the standard state-space model that is equivalent to the unit pulse response model. The state-space format of the model allows to user to take advantage of extensive state-space based tools that are widely available for simulation, model reduction, dynamic inversion, Kalman filtering, etc. The practical utility of the new representation is demonstrated in modeling the acoustic propagation of a sound source in a complex city center environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, T.S., Moran, M.L., Ketcham, S.A., Lacombe, J.: Tracked Vehicle Simulations and Seismic Wavefield Synthesis in Seismic Sensor Systems. Computing in Science and Engineering, 22–28 (2004).

    Google Scholar 

  2. Ketcham, S.A., Moran, M.L., Lacombe, J., Greenfield, R.J., Anderson, T.S.: Seismic Source Model for Moving Vehicles. IEEE Transactions on Geoscience and Remote Sensing, 43, No. 2, 248–256 (2005).

    Google Scholar 

  3. Ketcham, S.A., Wilson, D.K., Cudney, H., Parker, M.: Spatial Processing of Urban Acoustic Wave Fields From High-Performance Computations. ISBN: 978–0–7695–3088–5, Digital Object Identifier: 10.1109/HPCMP–UGC.2007.68, DoD High Performance Computing Modernization Program Users Group Conference, 289–295 (2007).

    Google Scholar 

  4. Juang, J.-N., Pappa, R.S.: An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction. Journal of Guidance, Control, and Dynamics, 8, 620–627 (1985).

    Article  MATH  Google Scholar 

  5. Ho, B.L., Kalman, R.E.: Effective Construction of Linear State-Variable Models from Input–Output Functions. Proceedings of the 3rd Annual Allerton Confernce on Circuit and System Theory, 152–192 (1965); also Regelungstechnik, 14, 545–548 (1966).

    Google Scholar 

  6. Juang, J.-N., Cooper, J.E., Wright, J.R.: An Eigensystem Realization Algorithm Using Data Correlations (ERA/DC) for Modal Parameter Identification. Control Theory and Advanced Technology, 4, No. 1, 5–14 (1988).

    Google Scholar 

  7. Juang, J.-N.: Applied System Identification. Prentice-Hall, Upper Saddle River, NJ (2001).

    Google Scholar 

  8. Ketcham, S.A., Phan, M.Q., Cudney, H.H.: Reduced-Order Wave-Propagation Modeling Using the Eigensystem Realization Algorithm. The 4th International Conference on High Performance Scientific Computing, Hanoi, Vietnam (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh Q. Phan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Phan, M.Q., Ketcham, S.A., Darling, R.S., Cudney, H.H. (2012). Superstable Models for Short-Duration Large-Domain Wave Propagation. In: Bock, H., Hoang, X., Rannacher, R., Schlöder, J. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25707-0_21

Download citation

Publish with us

Policies and ethics