Skip to main content

Generalized Bilinear System Identification with Coupling Force Variables

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization of Complex Processes

Abstract

A novel method is presented for identification of a generalized bilinear system with nonlinear terms consisting of the product of the state vector and the coupling force variables. The identification process requires a series of pulse response experiments from input values of various pulse duration for coupling force variables. It also requires experiments with multiple inputs rather than one single input at a time. The resulting identified system matrices represent the input–output map of the generalized bilinear system. A simple example is given to illustrate the concept of the identification method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruni, C., DiPillo, G., and Koch, G., On the Mathematical Models of Bilinear Systems, Ricerche Di Automatica, 2 (1), 1971, pp. 11–26.

    Google Scholar 

  2. Bruni, C., DiPillo, G., and Koch, G., Bilinear Systems: An Appealing Class of Nearly Linear Systems in Theory and Application, IEEE Transaction Automatic Control, AC-19, 1974, pp. 334–348.

    Google Scholar 

  3. Mohler, R. R., and Kolodziej, W. J., An Overview of Bilinear System Theory and Applications, IEEE Transactions on Systems, Man and Cybernetics, SMC-10, 1980, pp. 683–688.

    Google Scholar 

  4. Mohler, R. R., Nonlinear Systems: Vol. II, Applications to Bilinear Control, Prentice-Hall, New Jersey, 1991.

    Google Scholar 

  5. Elliott, D. L., Bilinear Systems, in Encyclopedia of Electrical Engineering, Vol. II John Webster (ed.), John Wiley and Sons, New York, 1999, pp. 308–323.

    Google Scholar 

  6. Juang, J.-N., Continuous-Time Bilinear System Identification, Nonlinear Dynamics, Kluwer Academic Publishers, Special Issue 39(1-2), (January I-II 2005), pp. 79–94

    Google Scholar 

  7. Sontag, E.D., Wang, Y., Megretski, A., Input Classes for Identification of Bilinear Systems, 2007 American Control Conference, July 11–13, 2007, Marriott Marquis Hotel at Time Square, New York, USA, Paper FrA04.3.

    Google Scholar 

  8. Juang, J.-N., Generalized Bilinear System Identification, The Journal of the Astronautical Sciences, Vol. 57, Nos. 1 & 2, January-June 2009, pp. 261–273.

    Google Scholar 

  9. Juang, J.-N., Applied System Identification, Prentice Hall, New Jersey, 1994.

    MATH  Google Scholar 

  10. Juang, J-N. and Phan, M. Q., Identification and Control of Mechanical Systems, Cambridge University Press, New York, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jer-Nan Juang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Juang, JN. (2012). Generalized Bilinear System Identification with Coupling Force Variables. In: Bock, H., Hoang, X., Rannacher, R., Schlöder, J. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25707-0_14

Download citation

Publish with us

Policies and ethics