Skip to main content

Modified Quasilinearization Method for Optimal Launch Mission Planning Problems

  • Conference paper
  • 2514 Accesses

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 124))

Abstract

Optimal launch mission planning is one of the most important engineering fields where optimization tools and optimal control theory have found routine application. Optimal control theory is critical for launch mission to meet mission requirement such as minimum time, minimum fuel requirement, minimizing undershooting and so on. Compared to traditional off-line launch mission planning, on-line launch mission planning could generate guidance plan with respect to the current situation of the vehicles to enhance the guidance precision greatly and reduce the risks resulted by unpredictable events, while the core issue of on-board launch mission planning is how to solve the corresponding Two-Point Boundary-Value Problem (TPBVP) quickly, efficiently and precisely. We intend to introduce a stable algorithm here with a verified convergent ability to handle optimal launch mission planning problems with relatively little time consumption.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bryson Jr., A.E., Ho, Y.-C.: Applied Optimal Control-Optimization, Estimation, and Control, pp. 212–243. Taylor & Francis Group (1975)

    Google Scholar 

  2. Reddy, Y.N., Anantha Reddy, K.: Numerical integration method for general singular-ly perturbed two point boundary value problems. Applied Mathematics and Computation 133, 351–373 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Goodman, T.R., Lance, G.N.: The Numerical Integration of Two-Point Boundary Value Problems. Mathematical Tables and Other Aids to Computation 10(54), 82–86

    Google Scholar 

  4. Lakshmikantham, V., Leela, S., Mcrae, F.A.: Improved Generalized Quasilinea-rization (GQL) Method. Nonlinear Analysis, Theory, Methods & Applications 24(11), 1627–1637

    Google Scholar 

  5. Kalaba, R.E., Wexler, A.S.: New Methods For Boundary Value Problems. Math. Comput. Modelling 11, 855–857 (1988)

    Article  MathSciNet  Google Scholar 

  6. Lu, J.: Variational iteration method for solving two-point boundary value problems. Journal of Computational and Applied Mathematics 207, 92–95 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ravi Kanth, A.S.V., Aruna, K.: Solution of singular two-point boundary value prob-lems using differential transformation method. Physics Letters A 372, 4671–4673 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. El-Gebeily, M., O’Regan, D.: A generalized quasilinearization method for second-order nonlinear differential equations with nonlinear boundary conditions. Journal of Computational and Applied Mathematics 192, 270–281 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cuomo, S., Marasco, A.: A numerical approach to nonlinear two-point boundary value problems for ODEs. Computers and Mathematics with Applications 55, 2476–2489 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Miele, A., Iyer, R.R.: Modified Quasilinearization Method for Solving Nonlinear, Two-Point Boundary-Value Problems. Journal of Mathematical Analysis and Applications 36, 674–692 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  11. Miele, A.: Method of Particular Solutions for Linear, Two-Point Boundary-Value Problems. Journal of Optimization Theory and Applications 2(4) (1968)

    Google Scholar 

  12. Sun, H.: Closed-loop Endo-atmospheric Ascent Guidance for Reusable Launch Vehicle. Iowa State University, Ames (2002)

    Google Scholar 

  13. Griffin, B.: Improvements to an Analytical Multiple-shooting Approach for Optim-al Burn-coast-burn Ascent Guidance. Iowa State University, Ames (2007)

    Google Scholar 

  14. Lu, P., Sun, H., Tsai, B.: Closed-loop Endo-atmospheric Ascent Guidance. Journal of Guidance, Control, and Dynamics 26(2), 283–294 (2003)

    Article  Google Scholar 

  15. Shen, Z., Lu, P.: On-board Generation of Three-dimensional Constrained Entry Trajectories. Journal of Guidance, Control and Dynamics 26(1), 111–121 (2003)

    Article  MathSciNet  Google Scholar 

  16. Lu, P., Griffin, B., Dukeman, G.: Rapid Optimal Multiburn Ascent Planning and Guidance. Journal of Guidance, Control, and Dynamics 31(6), 1656–1664 (2008)

    Article  Google Scholar 

  17. Heideman, J.C.: Use of the Method of Particular Solutions in Nonlinear, Two-Point Boundary Value Problems. Journal of Optimization Theory and Applications 2(6), 450–462 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ahmad, B., Nieto, J.J., Shahzad, N.: Generalized quasilinearization me-thod for mixed boundary value problems. Applied Mathematics and Computation 133, 423–429 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lakshmikantham, V., Vatsala, A.S.: Generalized quasilinearization versus Newton’s method. Applied Mathematics and Computation 164, 523–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, Z., Yang, Y., Jin, Z. (2011). Modified Quasilinearization Method for Optimal Launch Mission Planning Problems. In: Wang, Y., Li, T. (eds) Practical Applications of Intelligent Systems. Advances in Intelligent and Soft Computing, vol 124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25658-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25658-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25657-8

  • Online ISBN: 978-3-642-25658-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics