Advertisement

Air-Sea Interactions of Natural Long-Lived Greenhouse Gases (CO2, N2O, CH4) in a Changing Climate

  • Dorothee C. E. Bakker
  • Hermann W. Bange
  • Nicolas Gruber
  • Truls Johannessen
  • Rob C. Upstill-Goddard
  • Alberto V. Borges
  • Bruno Delille
  • Carolin R. Löscher
  • S. Wajih A. Naqvi
  • Abdirahman M. Omar
  • J. Magdalena Santana-Casiano
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

Understanding and quantifying ocean–atmosphere exchanges of the long-lived greenhouse gases carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are important for understanding the global biogeochemical cycles of carbon and nitrogen in the context of ongoing global climate change. In this chapter we summarise our current state of knowledge regarding the oceanic distributions, formation and consumption pathways, and oceanic uptake and emissions of CO2, N2O and CH4, with a particular emphasis on the upper ocean. We specifically consider the role of the ocean in regulating the tropospheric content of these important radiative gases in a world in which their tropospheric content is rapidly increasing and estimate the impact of global change on their present and future oceanic uptake and/or emission. Finally, we evaluate the various uncertainties associated with the most commonly used methods for estimating uptake and emission and identify future research needs.

Keywords

Dissolve Inorganic Carbon Ocean Acidification Year Before Present 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abril G, Borges AV (2004) Carbon dioxide and methane emissions from estuaries. In: Tremblay A, Varfalvy L, Roehm C, Garneau M (eds) Greenhouse gas emissions: fluxes and processes, hydroelectric reservoirs and natural environments. Springer, Berlin, pp 187–207Google Scholar
  2. Abril G, Iversen N (2002) Methane dynamics in a shallow, non-tidal estuary (Randers Fjord, Denmark). Mar Ecol Prog Ser 230:171–181Google Scholar
  3. Abril G, Nogueira E, Hetcheber H, Cabeçadas G, Lemaire E, Brogueira MJ (2002) Behaviour of organic carbon in nine contrasting European estuaries. Estuar Coast Shelf Sci 54:241–262Google Scholar
  4. Abril G, Commarieu MV, Guerin F (2007) Enhanced methane oxidation in an estuarine turbidity maximum. Limnol Oceanogr 52:470–475Google Scholar
  5. Amouroux D, Roberts G, Rapsomanikis S, Andreae MO (2002) Biogenic gas (CH4, N2O, DMS) emission to the atmosphere from near-shore and shelf waters of the north-western Black Sea. Estuar Coast Shelf Sci 54:575–587Google Scholar
  6. Anderson LG, Falck E, Jones EP, Jutterström S, Swift J (2004) Enhanced uptake of atmospheric CO2 during freezing of seawater: a field study in Storfjorden, Svalbard. J Geophys Res 109, C06004. doi: 10.1029/2003JC002120CrossRefGoogle Scholar
  7. Andersson AJ, Mackenzie FT, Ver LM (2003) Solution of shallow-water carbonates: an insignificant buffer against rising atmospheric CO2. Geology 31:513–516Google Scholar
  8. Archer D (2007) Methane hydrate stability and anthropogenic climate change. Biogeosciences 4:521–544. doi: 10.5194/bg-4-521-2007CrossRefGoogle Scholar
  9. Archer D, Buffett B (2005) Time-dependent response of the global ocean clathrate reservoir to climatic and anthropogenic forcing. Geochem Geophys Geosyst 6, Q03002. doi: 10.1029/2004GC000854CrossRefGoogle Scholar
  10. Archer D, Kheshgi H, Maier-Reimer E (1997) Multiple timescales for neutralization of fossil fuel CO2. Geophys Res Lett 24:405–408Google Scholar
  11. Archer D, Winguth A, Lea D, Mahowald N (2000) What casued the glacial/interglacial atmospheric pCO2 cycles? Rev Geophys 38(2):159–189Google Scholar
  12. Archer D, Buffett B, Brovkin V (2009) Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc Natl Acad Sci USA 106(49):20596–20601Google Scholar
  13. Aydin M, Verhulst KR, Saltzman ES, Battle MO, Montzka SA, Blake DR, Tang Q, Prather MJ (2011) Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air. Nature 476:198–201. doi: 10.1038/nature10352CrossRefGoogle Scholar
  14. Baggs E, Philippot L (2010) Microbial terrestrial pathways to nitrous oxide. In: Smith K (ed) Nitrous oxide and climate change. Earthscan, London, pp 36–62Google Scholar
  15. Baker DF, Law RM, Gurney KR, Rayner P, Peylin P, Denning AS, Bousquet P, Bruhwiler L, Chen Y-H, Ciais P, Fung IY, Heimann M, John J, Maki T, Maksyutov S, Masarie K, Prather M, Pak B, Taguchi S, Zhu Z (2006) TransCom 3 inversion intercomparison: impact of the transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003. Global Biogeochem Cycle 20, GB1002. doi: 10.1029/2004GB002439CrossRefGoogle Scholar
  16. Bakker DCE, Hoppema M, Schröder M, Geibert W, De Baar HJW (2008) A rapid transition from ice covered CO2–rich waters to a biologically mediated CO2 sink in the eastern Weddell Gyre. Biogeosciences 5:1373–1386. doi: 10.5194/bg-5-1373-2008CrossRefGoogle Scholar
  17. Bakker DCE, Pfeil B, Olsen A, Sabine CL, Metzl N, Hankin S, Koyuk H, Kozyr A, Malczyk J, Manke A, Telszewski M (2012) Global data products help assess changes to the ocean carbon sink. Eos Trans Am Geophys Union 93(12):125–126. doi: 10.1029/2012EO120001CrossRefGoogle Scholar
  18. Ballantyre AP, Alden CB, Miller JB, Tans PP, White JWC (2012) Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488:70–73. doi: 10.1038/nature11299CrossRefGoogle Scholar
  19. Bange HW (2006a) New directions: the importance of the oceanic nitrous oxide emissions. Atmos Environ 40:198–199Google Scholar
  20. Bange HW (2006b) Nitrous oxide and methane in European coastal waters. Estuar Coast Shelf Sci 70:361–374Google Scholar
  21. Bange HW (2008) Gaseous nitrogen compounds (NO, N2O, N2, NH3) in the ocean. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ (eds) Nitrogen in the marine environment, 2nd edn. Elsevier, Amsterdam, pp 51–94Google Scholar
  22. Bange HW, Andreae MO (1999) Nitrous oxide in the deep waters of the world’s oceans. Global Biogeochem Cycle 13(4):1127–1135Google Scholar
  23. Bange HW, Bartell UH, Rapsomanikis S, Andreae MO (1994) Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeochem Cycle 8:465–480Google Scholar
  24. Bange HW, Rapsomanikis S, Andreae MO (1996) The Aegean Sea as a source of atmospheric nitrous oxide and methane. Mar Chem 53:41–49Google Scholar
  25. Bange HW, Bell TG, Cornejo M, Freing A, Uher G, Upstill-Goddard RC, Zhang G (2009) MEMENTO: a proposal to develop a database of marine nitrous oxide and methane measurements. Environ Chem 6:195–197Google Scholar
  26. Bange HW, Bergmann K, Hansen HP, Kock A, Koppe R, Malien F, Ostrau C (2010a) Dissolved methane during hypoxic events at the Boknis Eck time series station (Eckernförde Bay, SW Baltic Sea). Biogeosciences 7:1279–1284Google Scholar
  27. Bange HW, Freing A, Kock A, Löscher C (2010b) Marine pathways to nitrous oxide. In: Smith K (ed) Nitrous oxide and climate change. Earthscan, London, pp 36–62Google Scholar
  28. Barnes J, Upstill-Goddard RC (2011) N2O seasonal distribution and air-sea exchange in UK estuaries: implications for tropospheric N2O source from European coastal waters. J Geophys Res 116, G01006. doi: 10.1029/2009JG001156CrossRefGoogle Scholar
  29. Barnes J, Ramesh R, Purvaja R, Nirmal Rajkumar A, Senthil Kumar B, Krithika K, Ravichandran K, Uher G, Upstill-Goddard RC (2006) Tidal dynamics and rainfall control N2O and CH4 emissions from a pristine mangrove creek. Geophys Res Lett 33, L15405. doi: 10.1029/2006GL026829CrossRefGoogle Scholar
  30. Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50Google Scholar
  31. Bates NR, Michaels AF, Knap AH (1996a) Seasonal and interannual variability of oceanic carbon dioxide species at the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep-Sea Res Part II 43(2–3):347–383Google Scholar
  32. Bates TS, Kelly KC, Johnson JE, Gammon RH (1996b) A reevaluation of the open ocean source of methane to the atmosphere. J Geophys Res 101:6953–6961Google Scholar
  33. Bates NR, Samuels L, Merlivat L (2001) Biogeochemical and physical factors influencing seawater fCO2 and air-sea CO2 exchange on the Bermuda coral reef. Limnol Oceanogr 46(4):833–846Google Scholar
  34. Bates NR, Moran SB, Hansell DA, Mathis JT (2006) An increasing CO2 sink in the Arctic Ocean due to sea-ice loss. Geophys Res Lett 33, L23609. doi: 10.1029/2006GL027028CrossRefGoogle Scholar
  35. Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100Google Scholar
  36. Bauzá JF, Morrell JM, Corredor JE (2002) Biogeochemistry of nitrous oxide production in the Red Mangrove (Rhizophora mangle) forest sediments. Estuar Coast Shelf Sci 55:697–704Google Scholar
  37. Beauchamp B (2004) Natural gas hydrates: myths, facts and issues. C R Geosci 336:751–765. doi: 10.1016/j.crte.2004.04.003CrossRefGoogle Scholar
  38. Beman JM, Chow C-E, King AL, Feng Y, Fuhrman JA, Andersson A, Bates NR, Popp BN, Hutchins DA (2011) Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc Natl Acad Sci USA 108(1):208–213. doi:101073/pnas.1011053108Google Scholar
  39. Bender ML, Ho DT, Hendricks MB, Mika R, Battle MO, Tans PP, Conway TJ, Sturtevant B, Cassar N (2005) Atmospheric O2/N2 changes, 1993–2002: implications for the partitioning of fossil fuel CO2 sequestration. Global Biogeochem Cycle 19, GB4017. doi:10.1029/2004GB002410CrossRefGoogle Scholar
  40. Biscaye PE, Anderson R (1994) Particle fluxes on the slope of the southern Mid-Atlantic Bight: SEEP-II. Deep-Sea Res Part II 41:459–469Google Scholar
  41. Biscaye PE, Anderson R, Deck BL (1988) Fluxes of particles and constituents to the Eastern United States continental slope and rise: SEEP-I. Cont Shelf Res 8:888–904Google Scholar
  42. Biswas H, Mukhopadhayay SK, De TK, Sen S, Jana TK (2006) Methane emission from the wetland rice fields in Sagar Island, NE coast of Bay of Bengal, India. Int J Agric Res 1(1):78–86Google Scholar
  43. Biswas H, Mukhopadhyay SK, Sen S, Jana TK (2007) Spatial and temporal patterns of methane dynamics in the tropical mangrove dominated estuary, NE coast of Bay of Bengal, India. J Mar Syst 68:55–64Google Scholar
  44. Blair NE, Aller RC (1995) Anaerobic methane oxidation on the Amazon shelf. Geochim Cosmochim Acta 59:3707–3715Google Scholar
  45. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626Google Scholar
  46. Bopp L, Le Quéré C, Heimann M, Manning AC (2002) Climate-induced oceanic oxygen fluxes: implications for the contemporary carbon budget. Global Biogeochem Cycle 16(2):1022. doi:10.1029/2011GB001445CrossRefGoogle Scholar
  47. Borges AV (2005) Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the Coastal Ocean? Estuaries 28(1):3–27Google Scholar
  48. Borges AV (2011) Present day carbon dioxide fluxes in the coastal ocean and possible feedbacks under global change. In: Duarte PM, Santana-Casiano JM (eds) Oceans and the atmospheric carbon content. Springer, Berlin, pp 47–77Google Scholar
  49. Borges AV, Abril G (2011) Carbon dioxide and methane dynamics in estuaries. In: Wolanski E, McLusky DS (eds) Treatise on estuarine and coastal science, vol 5, Biogeochemistry. Elsevier, Amsterdam, pp 119–161. doi:10.1016/B978-0-12-374711-2.00504-0CrossRefGoogle Scholar
  50. Borges AV, Gypens N (2010) Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification. Limnol Oceanogr 55:346–353Google Scholar
  51. Borges AV, Djenidi S, Lacroix G, Théate J, Delille B, Frankignoulle M (2003) Atmospheric CO2 flux from mangrove surrounding waters. Geophys Res Lett 30(11):1558. doi:10.1029/2003GL017143CrossRefGoogle Scholar
  52. Borges AV, Delille B, Frankignoulle M (2005) Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophys Res Lett 32, L14601. doi:10.1029/2005GL023053CrossRefGoogle Scholar
  53. Borges AV, Schiettecatte L-S, Abril G, Delille B, Gazeau F (2006) Carbon dioxide in European coastal waters. Estuar Coast Shelf Sci 70(3):375–387Google Scholar
  54. Borges AV, Tilbrook B, Metzl N, Lenton A, Delille B (2008) Inter-annual variability of the carbon dioxide oceanic sink south of Tasmania. Biogeosciences 5:141–155Google Scholar
  55. Borges AV, Alin SR, Chavez FP, Vlahos P, Johnson KS, Holt JT, Balch WM, Bates N, Brainard R, Cai W-J, Chen CTA, Currie K, Dai M, Degrandpré M, Delille B, Dickson A, Evans W, Feely RA, Friederich GE, Gong G-C, Hales B, Hardman-Mountford N, Hendee J, Hernandez-Ayon JM, Hood M, Huertas E, Hydes D, Ianson D, Krasakopoulou E, Litt E, Luchetta A, Mathis J, McGillis WR, Murata A, Newton J, Ólafsson J, Omar A, Perez FF, Sabine C, Salisbury JE, Salm R, Sarma VVSS, Schneider B, Sigler M, Thomas H, Turk D, Vandemark D, Wanninkhof R, Ward B (2010) A global sea surface carbon observing system: inorganic and organic carbon dynamics in coastal oceans. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2, Venice, Italy, 21–25 Sept 2009, ESA publication WPP-306. doi:10.5270/OceanObs09.cwp.07Google Scholar
  56. Bouillon S, Middelburg JJ, Dehairs F, Borges AV, Abril G, Flindt MR, Ulomi S, Kristensen E (2008) Importance of intertidal sediment processes and pore water exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania). Biogeosciences 4:311–322Google Scholar
  57. Boutin J, Etcheto J, Dandonneau Y, Bakker DCE, Feely RA, Inoue HY, Ishii M, Ling RD, Nightingale PD, Metzl N, Wanninkhof R (1999) Satellite sea surface temperature: a powerful tool for interpreting in situ pCO2 measurements in the equatorial Pacific Ocean. Tellus 51B:490–508Google Scholar
  58. Brewer PG, Peltzer ET (2009) Limits to marine life. Science 324:347–348Google Scholar
  59. Brewer PG, Paull C, Peltzer ET, Ussler W, Rehder G, Friederich G (2002) Measurement of the fate of gas hydrates during transit through the ocean water column. Geophys Res Lett 29:38. doi:10.1029/2002GL014727CrossRefGoogle Scholar
  60. Brix H, Gruber N, Keeling CD (2004) Interannual variability of the upper ocean carbon cycle at station ALOHA near Hawaii. Global Biogeochem Cycle 18, GB4019. doi:10.1029/2004GB002245CrossRefGoogle Scholar
  61. Broecker WS, Peng T-H (1982) Tracers in the sea. Eldigio Press, Lamont-Doherty Geological Observatory, Columbia University, PalisadesGoogle Scholar
  62. Brüchert V, Currie B, Peard KR (2009) Hydrogen sulphide and methane emissions on the central Namibian shelf. Prog Oceanogr 83:169–179Google Scholar
  63. Buffett B, Archer D (2004) Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth Planet Sci Lett 227:185–199. doi:10.1016/j.epsl.2004.09.005CrossRefGoogle Scholar
  64. Buitenhuis E, Van Bleijswijk J, Bakker DCE, Veldhuis MJW (1996) Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea. Mar Ecol Prog Ser 143:271–282Google Scholar
  65. Byrne RH, DeGrandpre MD, Short RT, Martz TR, Merlivat L, McNeil C, Sayles FL, Bell R, Fietzek P (2010) Sensors and systems for in situ observations of marine carbon dioxide system variables. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2, Venice, Italy, 21–25 Sept 2009, ESA publication WPP-306. doi:10.5270/OceanObs09.cwp.13Google Scholar
  66. Cabello P, Roldán MD, Moreno-Vivián C (2004) Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150(11):3527–3546Google Scholar
  67. Cai W-J (2011) Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annu Rev Mar Sci 3:123–145Google Scholar
  68. Cai W-J, Dai MH, Wang YC (2006) Air-sea exchange of carbon dioxide in ocean margins: a province-based synthesis. Geophys Res Lett 33, L12603. doi:10.1029/2006GL026219 CrossRefGoogle Scholar
  69. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365Google Scholar
  70. Cantera JJL, Stein LY (2007) Role of nitrite reductase in the ammonia-oxidizing pathway of Nitrosomonas europaea. Arch Microbiol 188(4):349–354Google Scholar
  71. Capone DG, Kiene RP (1988) Comparison of microbial dynamics in marine and freshwater sediments: contrasts in anaerobic carbon catabolism. Limnol Oceanogr 33(4 part 2):725–749Google Scholar
  72. Cavalieri DJ, Parkinson CL, Vinnikov KY (2003) 30-Year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys Res Lett 30(18):1970. doi:10.1029/2003GL018031CrossRefGoogle Scholar
  73. Chan F, Barth JA, Lubchenco J, Kirincich A, Weeks H, Peterson WT, Menge BA (2008) Emergence of anoxia in the California current large marine ecosystem. Science 319:920–920Google Scholar
  74. Chanton JP, Martens CS, Kelley CA (1989) Gas transport from methane-saturated, tidal freshwater and wetland sediments. Limnol Oceanogr 34(5):807–819Google Scholar
  75. Chen CTA, Borges AV (2009) Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Res Part II 56(8–10):578–590Google Scholar
  76. Codispoti LA (2010) Interesting times for marine N2O. Science 327:1339–1340Google Scholar
  77. Codispoti LA, Elkins JW, Friederich GE, Packard TT, Sakamoto CM, Yoshinari T (1992) On the nitrous oxide flux from productive regions that contain low oxygen waters. In: Desai BN (ed) Oceanography of the Indian ocean. Oxford-IBH, New Delhi, pp 271–284Google Scholar
  78. Codispoti LA, Flagg C, Kelly V (2005) Hydrographic conditions during the 2002 SBI process experiments. Deep-Sea Res Part II 52(24–26):3199–3226Google Scholar
  79. Cole JA (1988) Assimilatory and dissimilatory reduction of nitrate to ammonia. Symp Soc Gen Microbiol 42:281–329Google Scholar
  80. Comeau S, Gattuso JP, Nisumaa AM, Orr J (2011) Impact of aragonite saturation state changes on migratory pteropods. Proc Royal Soc B Biol Sci. doi: 10.1098/rspb.2011.0910CrossRefGoogle Scholar
  81. Conrad R, Seiler W (1988) Methane and hydrogen in seawater (Atlantic Ocean). Deep-Sea Res 35:1903–1917Google Scholar
  82. Corbière A, Metzl N, Reverdin G, Brunet C, Takahashi T (2007) Interannual and decadal variability of the oceanic carbon sink in the North Atlantic subpolar gyre. Tellus 59B:168–178Google Scholar
  83. Cornejo M, Farías L, Paulmier A (2006) Temporal variability in N2O water content and its air-sea exchange in an upwelling area off central Chile (36°S). Mar Chem 101:85–94Google Scholar
  84. Cornejo M, Farías L, Gallegos M (2007) Seasonal cycle of N2O vertical distribution and air-sea fluxes over the continental shelf waters off central Chile (36°S). Prog Oceanogr 75:383–395Google Scholar
  85. Crutzen PJ (1970) The influence of nitrogen oxides on the atmospheric ozone content. Q J R Meteorol Soc 96:320–325Google Scholar
  86. Crutzen PJ (1991) Methane’s sinks and sources. Nature 350:380–381Google Scholar
  87. Curry R, Dickson R, Yashayaev I (2003) A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426:826–829Google Scholar
  88. Cynar FJ, Yayanos AA (1991) Enrichment and characterization of a methanogenic bacterium from the oxic upper layer of the ocean. Curr Microbiol 23:89–96Google Scholar
  89. Dale AW, Regnier P, Van Cappellen P (2006) Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments: a theoretical analysis. Am J Sci 306:246–294. doi: 10.2475/ajs.306.4.246CrossRefGoogle Scholar
  90. Damm E, Mackensen A, Budéus G, Faber E, Hanfland C (2005) Pathways of methane in seawater: plume spreading in an Arctic shelf environment (SW Spitsbergen). Cont Shelf Res 25:1453–1472Google Scholar
  91. Damm E, Helmke E, Thoms S, Schauer U, Nöthig E, Bakker K, Kiene R (2010) Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences 7:1099–1108Google Scholar
  92. Dando PR, Austen MC, Burke RA, Kendall MA, Kennicutt MC, Judd AG, Moore DC, Ohara SCM, Schmaljohann R, Southward AJ (1991) Ecology of a North-Sea pockmark with an active methane seep. Mar Ecol Prog Ser 70:49–63Google Scholar
  93. De Angelis MA, Lee C (1994) Methane production during zooplankton grazing on marine phytoplankton. Limnol Oceanogr 39:1298–1308Google Scholar
  94. Delille B, Jourdain B, Borges AV, Tison J-L, Delille D (2007) Biogas (CO2, O2, dimethylsulfide) dynamics in spring Antarctic fast ice. Limnol Oceanogr 52(4):1367–1379Google Scholar
  95. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohman U, Ramachandran S, Da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. contribution of working group i to the fourth assessment report of the intergovermental panel on climate change. Cambridge University Press, Cambridge/New York, pp 499–587Google Scholar
  96. Deutsch C, Brix H, Ito T, Frenzel H, Thompson L (2011) Climate-forced variability of ocean hypoxia. Science 333:336–339Google Scholar
  97. Devol AH, Richey JE, Forsburg BR, Martinelli LA (1990) Seasonal dynamics in methane emissions from the Amazon river floodplain. J Geophys Res 95:16417–16426Google Scholar
  98. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929Google Scholar
  99. Dickson AG, Sabine CL, Christian JR (eds) (2007) Guide to best practices for ocean CO2 measurements, vol 3, PICES special publication. North Pacific Marine Science Organization, Sidney, BC, CanadaGoogle Scholar
  100. Dimitrov L (2002) Contribution to atmospheric methane by natural seepages on the Bulgarian continental shelf. Cont Shelf Res 22:2429–2442Google Scholar
  101. Dittmar T, Hertkorn N, Kattner G, Lara RJ (2006) Mangroves, a major source of dissolved organic carbon to the oceans. Global Biogeochem Cycle 20, GB1012. doi: 10.1029/2005GB002570CrossRefGoogle Scholar
  102. Dlugokencky EJ, Houweling S, Bruhwiler L, Masarie KA, Lang PM, Miller JB, Tans PP (2003) Atmospheric methane levels off: temporary pause or a new steady-state? Geophys Res Lett 30(19):1992. doi: 10.1029/2003GL018126CrossRefGoogle Scholar
  103. Dlugokencky EJ, Bruhwiler L, White JWC, Emmons LK, Novelli PC, Montzka SA, Masarie KA, Lang PM, Crotwell AM, Miller JB, Gatti LV (2009) Observational constraints on recent increases in the atmospheric CH4 burden. Geophys Res Lett 36, L18803. doi: 10.1029/2009GL039780CrossRefGoogle Scholar
  104. DOE (1994) In: Dickson AG, Goyet C (eds) Handbook of methods for the analysis of the various parameters of the carbon system in sea water; version 2. ORNL/CDIAC-74, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, USAGoogle Scholar
  105. Doney SC, Mahowald N, Lima I, Feely RA, Mackenzie FT, Lamarque J-F, Rasch PJ (2007) Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proc Natl Acad Sci USA 104(37):14580–14585Google Scholar
  106. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–37. doi: 10.1146/annurev-marine-041911-111611CrossRefGoogle Scholar
  107. Dore JE, Karl DM (1996) Nitrification in the euphotic zone as a source for nitrite, nitrate, and nitrous oxide at station ALOHA. Limnol Oceanogr 41:1619–1628Google Scholar
  108. Dore JE, Lukas R, Sadler DW, Karl DM (2003) Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean. Nature 424:754–757Google Scholar
  109. Dürr HH, Laruelle GG, Van Kempen CM, Slomp CP, Meybeck M, Middelkoop H (2011) Worldwide typology of nearshore coastal systems: defining the estuarine filter of river inputs to the oceans. Estuar Coasts 34:441–458Google Scholar
  110. EPA (2010) Methane and nitrous oxide emissions from natural sources. 430-R-10-001. Office of Atmospheric Programs (6207J), United States Environmental Protection Agency, Washington, DCGoogle Scholar
  111. EPICA Community Members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628Google Scholar
  112. Fazzolari E, Mariotti A, Germon JC (1990a) Nitrate reduction to ammonia – a dissimilatory process in Enterobacter-Amnigenus. Can J Microbiol 36(11):779–785Google Scholar
  113. Fazzolari E, Mariotti A, Germon JC (1990b) Dissimilatory ammonia production vs. denitrification in vitro and in inoculated agricultural soil samples. Can J Microbiol 36(11):786–793Google Scholar
  114. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366Google Scholar
  115. Feely RA, Takahashi T, Wanninkhof R, McPhaden MJ, Cosca CE, Sutherland SC, Carr M-E (2006) Decadal variability of the air‐sea CO2 fluxes in the equatorial Pacific Ocean. J Geophys Res 111, C08S90. doi: 10.1029/2005JC003129CrossRefGoogle Scholar
  116. Feely RA, Fabry VJ, Dickson AG, Gattuso J-P, Bijma J, Riebesell U, Doney S, Turley C, Saino T, Lee K, Anthony K, Kleypas J (2010) An international observational network for ocean acidification. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2, Venice, Italy, 21–25 Sept 2009, ESA publication WPP-306. doi:10.5270/OceanObs09.cwp.29Google Scholar
  117. Ferrón S, Ortega T, Gómez-Parra A, Forja JM (2007) Seasonal study of dissolved CH4, CO2 and N2O in a shallow tidal system of the bay of Cádiz (SW Spain). J Mar Syst 66:244–257. doi: 10.1016/j.jmarsys.2006.03.021CrossRefGoogle Scholar
  118. Flückiger J, Blunier T, Stauffer B, Chappellaz J, Spahni R, Kawamura K, Schwander J, Stocker TF, Dahl-Jensen D (2004) N2O and CH4 variations during the last glacial epoch: insight into global processes. Global Biogeochem Cycle 18, GB1020. doi: 10.1029/2003GB002122CrossRefGoogle Scholar
  119. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Rage G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovermental panel on climate change. Cambridge University Press, Cambridge/New York. pp 130–234Google Scholar
  120. Forster G, Upstill-Goddard RC, Gist N, Robinson C, Uher G, Woodward EMS (2009) Nitrous oxide and methane in the Atlantic Ocean between 50°N and 52°S: latitudinal distribution and sea-to-air flux. Deep-Sea Res Part II 56:964–976. doi: 10.1016/j.dsr2.2008CrossRefGoogle Scholar
  121. Francis CA, Beman JM, Kuypers MM (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J 1(1):19–27Google Scholar
  122. Frankignoulle M, Canon C, Gattuso J-P (1994) Marine calcification as a source of carbon dioxide: positive feedback of increasing CO2. Limnol Oceanogr 39(2):458–462Google Scholar
  123. Frankignoulle M, Gattuso J-P, Biondo R, Bourge I, Copin-Montégut G, Pichon M (1996) Carbon fluxes in coral reefs 2. Eulerian study of inorganic carbon dynamics and measurement of air-sea CO2 exchanges. Mar Ecol Prog Ser 145:123–132Google Scholar
  124. Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, Delille B, Libert E, Théate MJ (1998) Carbon dioxide emission from European estuaries. Science 282:434–436. doi: 10.1126/science.282.5388.434CrossRefGoogle Scholar
  125. Freing A (2009) Production and emissions of oceanic nitrous oxide. Ph.D. thesis. University of Kiel, KielGoogle Scholar
  126. Freing A, Wallace DWR, Bange HW (2012) Global oceanic production of nitrous oxide (N2O). Philos Trans R Soc B 367:1245–1255Google Scholar
  127. Friedlingstein P, Houghton RA, Marland G, Hacker J, Boden TA, Conway TJ, Canadell JC, Raupach MR, Ciais P, Le Quéré C (2010) Update on CO2 emissions. Nat Geosci 3:811–812. doi:10-1038/ngeo1022Google Scholar
  128. Gattuso J-P, Pichon M, Delesalle B, Frankignoulle M (1993) Community metabolism and air-sea CO2 fluxes in a coral reef ecosystem (Moorea, French Polynesia). Mar Ecol Prog Ser 96:259–267Google Scholar
  129. Gattuso J-P, Payri CE, Pichon M, Delesalle B, Frankignoulle M (1997) Primary production, calcification, and air-sea CO2 fluxes of a macroalgal-dominated coral reef community (Moorea, French Polynesia). J Phycol 33(5):729–738Google Scholar
  130. Gattuso J-P, Frankignoulle M, Wollast R (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst 29:405–433Google Scholar
  131. Gazeau F, Smith SV, Gentili B, Frankignoulle M, Gattuso J-P (2004) The European coastal zone: characterization and first assessment of ecosystem metabolism. Estuar Coast Shelf Sci 60(4):673–694Google Scholar
  132. Geibert W, Assmy P, Bakker DCE, Hanfland C, Hoppema M, Pichevin L, Schröder M, Schwarz JN, Stimac I, Usbeck U, Webb A (2010) High productivity in an ice melting hotspot at the eastern boundary of the Weddell Gyre. Global Biogeochem Cycle 24, GB3007. doi: 10.1029/2009GB003657CrossRefGoogle Scholar
  133. Geilfus N-X, Carnat G, Papakyriakou T, Tison J-L, Else B, Thomas H, Shadwick E, Delille B (2012) Dynamics of pCO2 and related air-ice CO2 fluxes in the Arctic coastal zone (Amundsen Gulf, Beaufort Sea). J Geophys Res 117, C00G10. doi: 10.1029/2011JC007117CrossRefGoogle Scholar
  134. Gerard G, Chanton J (1993) Quantification of methane oxidation in the rhizosphere of emergent aquatic macrophytes: defining upper limits. Biogeochemistry 23:79–97Google Scholar
  135. Global Carbon Project (2011) Carbon budget and trends 2010. www.globalcarbonproject.org/carbonbudget. Accessed 13 Jan 2012
  136. González-Dávila M, Santana-Casiano JM, Rueda MJ, Llinás O, González-Dávila E-F (2003) Seasonal and interannual variability of sea-surface carbon dioxide species at the European Station for Time Series in the Ocean at the Canary Islands (ESTOC) between 1996 and 2000. Global Biogeochem Cycle 17(3):1076. doi: 10.1029/2002GB001993CrossRefGoogle Scholar
  137. González-Dávila M, Santana-Casiano JM, Rueda MJ, Llinás O (2010) The water column distribution of carbonate system variables at the ESTOC site from 1995 to 2004. Biogeosciences 7:3067–3081Google Scholar
  138. Gordon AL, Huber BA (1990) Southern Ocean winter mixed layer. J Geophys Res 95:11655–11672Google Scholar
  139. Goreau TJ, Kaplan WA, Wofsy SC, McElroy MB, Valois FW, Watson SW (1980) Production of NO2- and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl Environ Microbiol 40:526–532Google Scholar
  140. Gornitz V, Fung I (1994) Potential distribution of methane hydrates in the world’s oceans. Global Biogeochem Cycle 8(3):335–347. doi: 10.1029/94GB00766CrossRefGoogle Scholar
  141. Gruber N, Keeling CD (2001) An improved estimate of the isotopic air‐sea disequilibrium of CO2: implications for the oceanic uptake of anthropogenic CO2. Geophys Res Lett 28(3):555–558. doi: 10.1029/2000GL011853CrossRefGoogle Scholar
  142. Gruber N, Sarmiento JL (2002) Large-scale biogeochemical/physical interactions in elemental cycles. In: Robinson AR, McCarthy JJ, Rothschild BJ (eds) The sea, vol 12. Wiley, New York, pp 337–399Google Scholar
  143. Gruber N, Keeling CD, Bates NR (2002) Interannual variability in the North Atlantic Ocean carbon sink. Science 298:2374–2378Google Scholar
  144. Gruber N, Gloor M, Mikaloff Fletcher SE, Doney SC, Dutkiewicz S, Follows MJ, Gerber M, Jacobson AR, Joos F, Lindsay K, Menemenlis D, Mouchet A, Müller SA, Takahashi T (2009) Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem Cycle 23, GB1005. doi: 10.1029/2008GB003349CrossRefGoogle Scholar
  145. Gruber N, Körtzinger A, Borges A, Claustre H, Doney SC, Feely RA, Hood M, Ishii M, Kozyr A, Monteiro P, Nojiri Y, Sabine CL, Schuster U, Wallace DWR, Wanninkhof R (2010) Plenary Paper: Toward an integrated observing system for ocean carbon and biogeochemistry at a time of change. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 1, Venice, Italy, 21–25 Sept 2009, ESA publication WPP-306. doi:10.5270/OceanObs09. p 18Google Scholar
  146. Gülzow W, Rehder G, Schneider B, Schneider von Deimling J, Sadkowiak B (2011) A new method for continuous measurement of methane and carbon dioxide in surface waters using off-axis integrated cavity output spectroscopy (ICOS): an example from the Baltic Sea. Limnol Oceanogr Methods 9:168–174Google Scholar
  147. Gurney KR, Law RM, Denning AS, Rayner PJ, Pak BC, Baker D, Bousquet P, Bruhwiler L, Chen Y-H, Ciais P, Fung IY, Heimann M, John J, Maki T, Maksyutov S, Peylin P, Prather M, Taguchi S (2004) Transcom 3 inversion intercomparison: model mean results for the estimation of seasonal carbon sources and sinks. Global Biogeochem Cycle 18, GB1010. doi: 10.1029/2003GB002111CrossRefGoogle Scholar
  148. Gypens N, Borges AV, Lancelot C (2009) Effect of eutrophication on air-sea CO2 fluxes in the coastal Southern North Sea: a model study of the past 50 years. Global Change Biol 15(4):1040–1056Google Scholar
  149. Hall TM, Prather MJ (1993) Simulations of the trend and annual cycle in stratospheric CO2. J Geophys Res 98:10573–10581. doi: 10.1029/93JD00325CrossRefGoogle Scholar
  150. Harlay J, Borges AV, Van Der Zee C, Delille B, Godoi RHM, Schiettecatte L-S, Roevros N, Aerts K, Lapernat P-E, Rebreanu L, Groom S, Daro M-H, Van Grieken R, Chou L (2010) Biogeochemical study of a coccolithophorid bloom in the northern Bay of Biscay (NE Atlantic Ocean) in June 2004. Prog Oceanogr 80:317–336. doi: 10.1016/j.pocean.2010.04.029CrossRefGoogle Scholar
  151. Harlay J, Chou L, De Bodt C, Van Oostende N, Piontek J, Suykens K, Engel A, Sabbe K, Groom S, Delille B, Borges AV (2011) Biogeochemistry and carbon mass balance of a coccolithophore bloom in the northern Bay of Biscay (June 2006). Deep-Sea Res Part I 58:111–127Google Scholar
  152. Heinze C, Maier-Reimer E, Winn K (1991) Glacial pCO2 reduction by the world ocean: experiments with the Hamburg carbon cycle model. Paleoceanography 6(4):395–430Google Scholar
  153. Heip C, Goosen NK, Herman PMJ, Kromkamp J, Middelburg JJ, Soetaert K (1995) Production and consumption of biological particles in temperate tidal estuaries. Oceanogr Mar Biol: Annu Rev 33:1–149Google Scholar
  154. Helm KP, Bindoff NL, Church JA (2011) Observed decreases in oxygen content of the global ocean. Geophys Res Lett 38, L23602. doi: 10.1029/2011GL049513CrossRefGoogle Scholar
  155. Ho DT, Law CS, Smith MJ, Schlosser P, Harvey M, Hill P (2006) Measurements of air‐sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations. Geophys Res Lett 33, L16611. doi: 10.1029/2006GL026817CrossRefGoogle Scholar
  156. Holmes ME, Sansone FJ, Rust TM, Popp BN (2000) Methane production, consumption, and air-sea exchange in the open ocean: an evaluation based on carbon isotopic ratios. Global Biogeochem Cycle 14:1–10Google Scholar
  157. Holt J, Wakelin S, Huthnance J (2008) Down-welling circulation of the northwest European continental shelf: a driving mechanism for the continental shelf carbon pump. Geophys Res Lett 36, L14602. doi: 10.1029/2009GL038997CrossRefGoogle Scholar
  158. Hopkinson CSJ, Smith EM (2005) Estuarine respiration: an overview of benthic, pelagic and whole system respiration. In: Del Giorgio PA, Williams PJL (eds) Respiration in aquatic ecosystems. Oxford University Press, OxfordGoogle Scholar
  159. Hornafius JS, Quigley DC, Luyendyk BP (1999) The world’s most spectacular marine hydrocarbons seeps (Coal Oil Point, Santa Barbara Channel, California): quantification of emissions. J Geophys Res 104(C9):20703–20711Google Scholar
  160. Hubberten H-W, Romanovski NN (2001) Terrestrial and offshore permafrost evolution of the Laptev Sea region during the last Pleistocene-Holocene glacial-eustatic cycle. In: Paepe R, Melnikov V (eds) Permafrost response on economic development, environmental security and natural resources. Proc-NATO-ARW, Novosibirsk, 1998. Kluwer, Dordrecht, pp 43–60Google Scholar
  161. Huthnance JM, Holt JT, Wakelin SL (2009) Deep ocean exchange with west-European shelf seas. Ocean Sci 5:621–634Google Scholar
  162. Iglesias-Rodriguez M, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DRH, Tyrrell T, Gibbs SJ, Von Dassow P, Rehm E, Armbrust EV, Boessenkool KP (2008) Phytoplankton calcification in a High-CO2 World. Science 320(5874):336–340. doi: 10.1126/science.1154122CrossRefGoogle Scholar
  163. IOCCP (2004) Ocean surface pCO2, data integration and database development workshop, National Institute for Environmental Studies, Tsukuba, Japan, 14–17 Jan 2004. IOCCP (International Ocean Carbon Coordination Project) report 2. www.ioccp.org
  164. IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  165. Ishii M, Inoue HY, Midorikawa T, Saito S, Tokieda T, Sasano D, Nakadate A, Nemoto K, Metzl N, Wong CS, Feely RA (2009) Spatial variability and decadal trend of the oceanic CO2 in the western equatorial Pacific warm/fresh water. Deep-Sea Res Part II 56(8–10):591–606Google Scholar
  166. Jackson MA, Tiedje JM, Averill BA (1991) Evidence for a no-rebound mechanism for production of N2O from nitrite by the copper-containing nitrite reductase from Achromobacter-Cycloclastes. FEBS Lett 29(1):41–44Google Scholar
  167. Jacobson AR, Mikaloff Fletcher SE, Gruber N, Sarmiento JL, Gloor M (2007) A joint atmosphere–ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global-scale fluxes. Global Biogeochem Cycle 21, GB1019. doi: 10.1029/2005GB002556CrossRefGoogle Scholar
  168. Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Paleoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovermental panel on climate change. Cambridge University Press, Cambridge/New York, pp 434–497Google Scholar
  169. Jansson BPM, Malandrin L, Johannson HE (2000) Cell cycle arrest in Archaea by the hypusination inhibitor N1-Guanyl-1,7-Diaminoheptane. J Bacteriol 182:1158–1161. doi: 10.1128/JB.182.4.1158-1161CrossRefGoogle Scholar
  170. Jayakumar DA, Naqvi SWA, Narvekar PV, George MD (2001) Methane in coastal and offshore waters of the Arabian Sea. Mar Chem 74:1–13Google Scholar
  171. Jin X, Gruber N, Dunne JP, Sarmiento JL, Armstrong RA (2006) Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Global Biogeochem Cycle 20, GB2015. doi: 10.1029/2005GB002532CrossRefGoogle Scholar
  172. Joos F, Meyer R, Bruno M, Leuenberger M (1999) The variability in the carbon sinks as reconstructed for the last 1000 years. Geophys Res Lett 26:1437–1441Google Scholar
  173. Joos F, Prentice IC, Sitch S, Meyer R, Hooss G, Plattner G-K, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochem Cycle 15(4):891–907Google Scholar
  174. Joos F, Plattner G-K, Stocker TF, Körtzinger A, Wallace DWR (2003) Trends in marine dissolved oxygen: implications for ocean circulation changes and the carbon budget. Eos Trans Am Geophys Union 84(21):197. doi: 10.1029/2003EO210001CrossRefGoogle Scholar
  175. Joyce J, Jewell PW (2003) Physical controls on methane ebullition from reservoirs and lakes. Environ Eng Geosci 9:167–178Google Scholar
  176. Judd A, Hovland M (2007) Seabed fluid flow. Impact on geology, biology and the marine environment. Cambridge University Press, Cambridge, UKGoogle Scholar
  177. Kai FM, Tyler SC, Randerson JT, Blake DR (2011) Reduced methane growth rate explained by decreased northern hemisphere microbial sources. Nature 476:194–197. doi: 10.1038/nature10259CrossRefGoogle Scholar
  178. Kaiser M, Attrill M, Jennings S, Thomas DN, Barnes D, Brierley A, Hiddink JG, Kaartokallio H, Polunin NVC, Raffaelli D (2011) Marine ecology: processes, systems and impacts, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  179. Karl DM, Beversdorf L, Björkman KM, Church MJ, Martinez A, Delong EF (2008) Aerobic production of methane in the sea. Nat Geosci 1:473–478Google Scholar
  180. Keeling RF, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Annu Rev Mar Sci 2:199–229Google Scholar
  181. Kelley C (2003) Methane oxidation potential in the water column of two diverse coastal marine sites. Biogeochemistry 65:105–120Google Scholar
  182. Kemp WM, Smith EM, Marvin-DiPasquale M, Boynton WR (1997) Organic carbon-balance and net ecosystem metabolism in Chesapeake Bay. Mar Ecol Prog Ser 150:229–248Google Scholar
  183. Kessler JD, Reeburgh WS, Southon J, Varela R (2005) Fossil methane source dominates Cariaco Basin water column methane geochemistry. Geophys Res Lett 32, L12609. doi: 10.1029/2005GL022984CrossRefGoogle Scholar
  184. Key RM, Kozyr A, Sabine CL, Lee K, Wanninkhof R, Bullister J, Feely RA, Millero F, Mordy C, Peng T-H (2004) A global ocean carbon climatology: results from GLODAP. Global Biogeochem Cycle 18, GB4031Google Scholar
  185. Kiene RP, Linn LJ, Bruton JA (2000) New and important roles for DMSP in marine microbial communities. J Sea Res 43:209–224Google Scholar
  186. King GM (1994) Ecophysiological characteristics of obligate methanotrophic bacteria and methane oxidation in situ. In: Murrell JC, Kelly DP (eds) Microbial growth on C1 compounds. Intercept Press, Andover, pp 303–313Google Scholar
  187. Kitidis V, Tizzard L, Uher G, Judd A, Upstill-Goddard RC, Head IM, Gray ND, Taylor G, Durán R, Diez R, Iglesias J, García-Gil S (2007) The biogeochemical cycling of methane in Ria de Vigo, NW Spain: sediment processing and sea–air exchange. J Mar Syst 66:258–271Google Scholar
  188. Klatt O, Roether W, Hoppema M, Bulsiewicz K, Fleischmann U, Rodehacke C, Fahrbach E, Weiss RF, Bullister JL (2002) Repeated CFC sections at the Greenwich Meridian in the Weddell Sea. J Geophys Res 107:3030. doi: 10.1029/2000JC000731CrossRefGoogle Scholar
  189. Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120Google Scholar
  190. Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of a workshop, 2005. St. Petersburg, Florida. NSF, NOAA and US Geological SurveyGoogle Scholar
  191. Kock A, Gebhardt S, Bange HW (2008) Methane emissions from the upwelling area off Mauritania (NW Africa). Biogeosciences 5:1119–1125Google Scholar
  192. Kock A, Schafstall J, Dengler M, Brandt P, Bange HW (2012) Sea-to-air and diapycnal nitrous oxide fluxes in the eastern tropical North Atlantic Ocean. Biogeosciences 9:957–964Google Scholar
  193. Koné YJM, Abril G, Kouadio KN, Delille B, Borges AV (2009) Seasonal variability of carbon dioxide in the rivers and lagoons of Ivory Coast (West Africa). Estuar Coasts 32:246–260Google Scholar
  194. Kreuzwieser J, Buchholz J, Rennenberg H (2003) Emission of methane and nitrous oxide by Australian mangrove ecosystems. Plant Biol 5:423–431Google Scholar
  195. Krey V, Canadell JG, Nakicenovic N, Abe Y, Andruleit H, Archer D, Grubler A, Hamilton NTM, Johnson A, Kostov V, Lamarque J-F, Langhorne N, Nisbet EG, O’Neill B, Riahi K, Riedel M, Wang W, Yakushev V (2009) Gas hydrates: entrance to a methane age or climate threat? Environ Res Lett 4, 034007Google Scholar
  196. Kristensen E, Flindt MR, Borges AV, Bouillon S (2008) Emission of CO2 and CH4 to the atmosphere by sediments and open waters in two Tanzanian mangrove forests. Mar Ecol Prog Ser 370:53–67Google Scholar
  197. Kroeze C, Dumont E, Seitzinger SP (2005) New estimates of global emissions of N2O from rivers and estuaries. Environ Sci 2:159–165Google Scholar
  198. Kvenvolden KA (1993) Gas hydrates – geological perspective and global change. Rev Geophys 31(2):173–187. doi: 10.1029/93RG00268CrossRefGoogle Scholar
  199. Kvenvolden KA (1999) Potential effects of gas hydrate on human welfare. Proc Natl Acad Sci USA 96:3420–3426Google Scholar
  200. Kvenvolden KA, Rogers BW (2005) Gaia’s breath – global methane exhalations. Mar Pet Geol 22(4):579–590Google Scholar
  201. Lam P, Jensen MM, Lavik G, van de Vossenberg J, Schmid M, Woebken D, Gutierrez D, Amann R, Jetten MSM, Kuypers MMM (2009) Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Natl Acad Sci USA 106(12):4752–4757Google Scholar
  202. Lamarque J-F (2008) Estimating the potential for methane clathrate instability in the 1% CO2 IPCC AR4 simulations. Geophys Res Lett 35, L19806. doi: 10.1029/2008GL035291CrossRefGoogle Scholar
  203. Lammers S, Suess E, Hovland M (1995) A large methane plume east of Bear Island (Barents Sea): implications for the marine methane cycle. Geol Rundsch 84:59–66Google Scholar
  204. Laruelle GG, Dürr HH, Slomp CP, Borges AV (2010) Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophys Res Lett 37, L15607. doi: 10.1029/2010GL043691CrossRefGoogle Scholar
  205. Le Quéré C, Rödenbeck C, Buitenhuis ET, Conway TJ, Lagenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N, Heimann M (2007) Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316:1735–1738Google Scholar
  206. Le Quéré C, Takahashi T, Buitenhuis ET, Rödenbeck C, Sutherland SC (2010) Impact of climate change and variability on the global oceanic sink of CO2. Global Biogeochem Cycles 24, GB4007Google Scholar
  207. Lee K, Sabine CL, Tanhua T, Kim T-W, Feely RA, Kim H-C (2011) Roles of marginal seas in absorbing and storing fossil fuel CO2. Energy Environ Sci 4:1133Google Scholar
  208. Lefèvre N, Watson AJ, Olsen A, Ríos AF, Pérez FF, Johannessen T (2004) A decrease in the sink for atmospheric CO2 in the North Atlantic. Geophys Res Lett 31(7), L07306Google Scholar
  209. Lefèvre N, Watson AJ, Watson AR (2005) A comparison of multiple regression and neural network techniques for mapping in situ pCO2 data. Tellus 57B:375–384Google Scholar
  210. Leifer I, Patro RK (2002) The bubble mechanism for methane transport from the shallow sea bed to the surface: a review and sensitivity study. Cont Shelf Res 22:2409–2428Google Scholar
  211. Leip A (1999) Nitrous oxide (N2O) emissions from a coastal catchment in the delta of the Po river: measurements and modeling of fluxes from a Mediterranean lagoon and agricultural soils. Ph.D. thesis, University of Bayreuth, BayreuthGoogle Scholar
  212. Lenton A, Cordon G, Bopp L, Metzl N, Cadule P, Tagliabue A, Le Sommer J (2009) Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys Res Lett 36, L12606. doi: 10.1029/2009GL038227CrossRefGoogle Scholar
  213. Liss PS, Merlivat L (1986) Air-sea exchange rates: introduction and synthesis. In: Buat-Ménard P (ed) The role of air-sea exchange in geochemical cycling. D. Reidel Publishing, Dordrecht, pp 113–127Google Scholar
  214. Liu X, Millero FJ (2002) The solubility of Fe(III) in seawater. Mar Chem 77:43–54Google Scholar
  215. Liu KK, Atkinson L, Quiñones RA, Talahue-McManus L (2010) Biogeochemistry of continental margins in a global context. In: Liu KK, Atkinson L, Quiñones RA, Talahue-McManus L (eds) Carbon and nutrient fluxes in continental margins. Springer, Berlin etc., pp 3–24Google Scholar
  216. Löscher CR, Kock A, Könneke, M, LaRoche J, Bange HW, Schmitz RA (2012) Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosciences 9:2419–2429. doi: 10.5194/bg-9-2419-2012Google Scholar
  217. Lovenduski NS, Gruber N, Doney SC, Lima ID (2007) Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. Global Biogeochem Cycle 21, GB2026. doi: 10.1029/2006GB002900CrossRefGoogle Scholar
  218. Lovenduski NS, Gruber N, Doney SC (2008) Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Global Biogeochem Cycle 22, GB3016. doi: 10.1029/2007GB003139CrossRefGoogle Scholar
  219. Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382. doi: 10.1038/nature06949CrossRefGoogle Scholar
  220. Mackenzie FT, Lerman A, Andersson AJ (2004) Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences 1(1):11–32Google Scholar
  221. Manning AC, Keeling RF (2006) Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus 58B:95–116. doi: 10.1111/j.1600-0889.2006.00175.xCrossRefGoogle Scholar
  222. Martens CS, Klump JV (1980) Biogeochemical cycling in an organic-rich coastal marine basin – I. Methane sediment-water exchange processes. Geochim Cosmochim Acta 44:471–490Google Scholar
  223. Martens-Habbena WPM, Berube PM, Urakawa H, De la Torre J, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461(7266):976–979Google Scholar
  224. Marty D, Nival P, Yoon WD (1997) Methanoarchaea associated with sinking particles and zooplankton collected in the Northeastern tropical Atlantic. Oceanol Acta 20:863–869Google Scholar
  225. Matsumoto K, Sarmiento J, Brezeinski MA (2002) Silicic acid leakage from the Southern Ocean: a possible explanation for glacial atmospheric pCO2. Global Biogeochem Cycle 16(3):5. doi: 10.1029/2001GB001442CrossRefGoogle Scholar
  226. Matthews BJH (1999) The rate of air-sea CO2 exchange: chemical enhancement and catalysis by marine microalgae. Ph.D. thesis, University of East Anglia, NorwichGoogle Scholar
  227. Mau S, Valentine DL, Clark JF, Reed J, Camilli R, Washburn L (2007) Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil Point, California. Geophys Res Lett 34, L22603. doi: 10.1029/2007GL031344CrossRefGoogle Scholar
  228. McKinley GA, Fay AR, Takahashi T, Metzl N (2011) Convergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescales. Nat Geosci 4:606–609. doi: 10.1038/NGEO1193CrossRefGoogle Scholar
  229. Metzl N (2009) Decadal increase of oceanic carbon dioxide in Southern Indian Ocean surface waters (1991–2007). Deep-Sea Res Part II 56:607–619Google Scholar
  230. Michelsen HA, Irion FW, Manney GL, Toon GC, Gunson MR (2000) Features and trends in Atmospheric Trace Molecule Spectroscopy (ATMOS) version 3 stratospheric water vapor and methane measurements. J Geophys Res 105(D18):22713–22724Google Scholar
  231. Middelburg JJ, Klaver G, Nieuwenhuize J, Wielemaker A, de Haas W, Van der Nat JFWA (1996) Organic matter mineralization in intertidal sediments along an estuarine gradient. Mar Ecol Prog Ser 132:157–168Google Scholar
  232. Middelburg JJ, Nieuwenhuize J, Iversen N, Høgh N, De Wilde H, Helder W, Seifert R, Christof O (2002) Methane distribution in European tidal estuaries. Biogeochemistry 59:95–119Google Scholar
  233. Mikaloff Fletcher SE, Gruber N, Jacobson AR, Doney SC, Dutkiewicz S, Gerber M, Gloor M, Follows M, Joos F, Lindsay K, Menemenlis D, Mouchet A, Müller SA, Sarmiento JL (2007) Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic transport. Global Biogeochem Cycle 21, GB1010. doi: 10.1029/2006GB002751CrossRefGoogle Scholar
  234. Miller LA, Papakyriakou TN, Collins RE, Deming JW, Ehn JK, Macdonald RW, Mucci A, Owens O, Raudsepp M, Sutherland N (2011) Carbon dynamics in sea ice: a winter flux time series. J Geophys Res 116(C2), C02028. doi: 10.1029/2009jc006058CrossRefGoogle Scholar
  235. Monaco A, Biscay P, Soyer J, Pocklington R, Heussner S (1990) Particle fluxes and ecosystem respons on a continental margin: the 1985–1988 Mediterranean ECOMARGE Experiment. Cont Shelf Res 10(9–11):809–839. doi: 10.1016/0278-4343(90)90061-PCrossRefGoogle Scholar
  236. Monteiro PMS, Schuster U, Hood M, Lenton A, Metzl N, Olsen A, Rogers K, Sabine CL, Takahashi T, Tilbrook B, Yoder J, Wanninkhof R, Watson AJ (2010) Community white paper. A global sea surface carbon observing system: Assessment of changing sea surface CO2 and air-sea CO2 fluxes. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2, Venice, Italy, 21–25 Sept 2009, ESA publication WPP-306. doi:10.5270/OceanObs09.cwp.64Google Scholar
  237. Montzka SA, Dlugokencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 476:43–50Google Scholar
  238. Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, House CH (2008) Methyl sulphides as intermediates in the anaerobic oxidation of methane. Environ Microbiol 10:162–173Google Scholar
  239. Morell JM, Capella J, Mercado A, Bauzá J, Corredor JE (2001) Nitrous oxide fluxes in Caribbean and tropical Atlantic waters: evidence for near surface production. Mar Chem 74:131–143Google Scholar
  240. Mucci A (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am J Sci 283:780–799Google Scholar
  241. Mudelsee M (2001) The phase relations among atmospheric CO2 content, temperature and global ice volume over the past 420 ka. Q Sci Rev 20:583–589Google Scholar
  242. Naik H, Naqvi SWA, Suresh T, Narvekar PV (2008) Impact of a tropical cyclone on biogeochemistry of the central Arabian Sea. Global Biogeochem Cycle 22, GB3020. doi: 10.1029/2007GB003028CrossRefGoogle Scholar
  243. Naqvi SWA (2008) The Indian Ocean. In: Capone DG, Carpenter EJ, Bronk DA (eds) Nitrogen in the marine environment, 2nd edn. Elsevier, Amsterdam, pp 631–681Google Scholar
  244. Naqvi SWA, Jayakumar DA, Narvekar PV, Naik H, Sarma VVSS, D’Souza W, Joseph S, George MD (2000) Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408:346–349Google Scholar
  245. Naqvi SWA, Bange HW, Gibb SW, Goyet C, Hatton AD, Upstill-Goddard RC (2005) Biogeochemical ocean–atmosphere transfers in the Arabian Sea. Prog Oceanogr 65:116–144Google Scholar
  246. Naqvi SWA, Bange HW, Farías L, Monteiro PMS, Scranton MI, Zhang J (2010) Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences 7:2159–2190Google Scholar
  247. Naudin JJ, Cauwet G, Chrétiennot-Dinet MJ, Deniaux B, Devenon JL, Pauc H (1997) River discharge and wind influence upon particulate transfer at the land-ocean interaction: case study of the Rhône river plume. Estuar Coast Shelf Sci 45:303–316. doi: 10.1006/ecss.1996.0190CrossRefGoogle Scholar
  248. Nevison CD, Weiss RF, Erickson DJ III (1995) Global oceanic emissions of nitrous oxide. J Geophys Res 100:15809–15820Google Scholar
  249. Nevison C, Lueker T, Weiss RF (2004) Quantifying the nitrous oxide source from coastal upwelling. Global Biogeochem Cycle 18, GB1018. doi:1010.1029/2003GB002110 Google Scholar
  250. Nightingale PD, Malin G, Law CS, Watson AJ, Liss PS, Liddicoat MI, Boutin J, Upstill-Goddard RC (2000) In-situ evaluation of air-sea gas exchange parameterisations using novel conservative and volatile tracers. Global Biogeochem Cycle 14(1):373–387Google Scholar
  251. Nirmal Rajkumar A, Barnes J, Ramesh R, Purvaja R, Upstill-Goddard RC (2008) Methane and nitrous oxide fluxes in the polluted Adyar River and estuary. SE India Mar Pollut Bull 56:2043–2051Google Scholar
  252. O’Connor FM, Boucher O, Gedney N, Jones CD, Folberth GA, Coppell R, Friedlingstein P, Collins WJ, Chappellaz J, Ridley J, Johnson CE (2010) Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Rev Geophys 48, RG4005. doi: 10.1029/2010RG000326CrossRefGoogle Scholar
  253. Odum HT, Hoskin CM (1958) Comparative studies of the metabolism of Texas bays. Publ Inst Mar Sci Univ Tex 5:16–46Google Scholar
  254. Odum HT, Wilson R (1962) Further studies on the reaeration and metabolism of Texas bays. Publ Inst Mar Sci Univ Tex 8:23–55Google Scholar
  255. Ohde S, van Woesik R (1999) Carbon dioxide flux and metabolic processes of a coral reef, Okinawa. Bull Mar Sci 65:559–576Google Scholar
  256. Olsen A, Brown KR, Chierici M, Johannessen T, Neill C (2008) Sea surface CO2 fugacity in the subpolar North Atlantic. Biogeosciences 5:535–547, www.biogeosciences-5/535/2008/Google Scholar
  257. Omar A, Johannessen T, Bellerby RGJ, Olsen A, Anderson LG, Kivimäe C, Omar A, Johannessen T, Bellerby RGJ, Olsen A, Anderson LG, Kivimäe C (2005) Sea-ice and brine formation in Storfjorden: implications for Arctic wintertime air-sea CO2 flux. In: Drange H, Dokken T, Furevik T, Gerdes R, Berger W (eds) The Nordic seas: an integrated perspective, vol 158, American Geophysical Union Geophysical Monograph. American Geophysical Union, Washington, DC, pp 117–187Google Scholar
  258. Oremland RS (1979) Methanogenic activity in plankton samples and fish intestines: a mechanism for in situ methanogenesis in ocean surface waters. Limnol Oceanogr 24:1136–1141Google Scholar
  259. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686Google Scholar
  260. Ostrovsky I (2003) Methane bubbles in Lake Kinneret: quantification and temporal and spatial heterogeneity. Limnol Oceanogr 48:1030–1036Google Scholar
  261. Oudot C, Jean-Baptiste P, Fourré E, Mormiche C, Gueve M, Ternon J-F, Le Corre P (2002) Transatlantic equatorial distribution of nitrous oxide and methane. Deep-Sea Res Part I 49(7):1175–1193Google Scholar
  262. Paull CK, Brewer PG, Ussler W III, Peltzer ET, Rehder G, Clague D (2003) An experiment demonstrating that marine slumping is a mechanism to transfer methane from seafloor gas-hydrate deposits into the upper ocean and atmosphere. Geo-Mar Lett 22:198–203. doi: 10.1007/s00367-002-0113-yCrossRefGoogle Scholar
  263. Paull CK, Ussler W, Holbrook S, Hill TM, Keaten R, Mienert J, Haflidaon H, Johnson JE, Winters WG, Lorenson TD (2008) Origin of pockmarks and chimney structures on the flanks of the Storegga slide, offshore Norway. Geo-Mar Lett 28:43–51. doi: 10.1007/s00367-007-0088-9CrossRefGoogle Scholar
  264. Peters GP, Marland G, Le Quéré C, Boden T, Canadell JG, Raupach MR (2012) Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Clim Change 2:2–4. doi: 10.1038/nclimate1332CrossRefGoogle Scholar
  265. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436. doi: 10.1038/20859CrossRefGoogle Scholar
  266. Pfeil, B, Olsen, A, Bakker, DCE, Hankin S, Koyuk H, Kozyr A, Malczyk J, Manke A, Metzl N, Sabine CL, Akl J, Alin SR, Bates N, Bellerby RGJ, Borges A, Boutin J, Brown PJ, Cai W-J, Chavez FP, Chen A, Cosca C, Fassbender AJ, Feely RA, González-Dávila M, Goyet C, Hales B, Hardman-Mountford N, Heinze C, Hood M, Hoppema M, Hunt CW, Hydes D, Ishii M, Johannessen T, Jones SD, Key RM, Körtzinger A, Landschützer P, Lauvset SK, Lefèvre N, Lenton A, Lourantou A, Merlivat L, Midorikawa T, Mintrop L, Miyazaki C, Murata A, Nakadate A, Nakano Y, Nakaoka S, Nojiri Y, Omar AM, Padin XA, Park G-H, Paterson K, Perez FF, Pierrot D, Poisson A, Ríos AF, Salisbury J, Santana-Casiano JM, Sarma VVSS, Schlitzer R, Schneider B, Schuster U, Sieger R, Skjelvan I, Steinhoff T, Suzuki T, Takahashi T, Tedesco K, Telszewski M, Thomas H, Tilbrook B, Tjiputra J, Vandemark D, Veness T, Wanninkhof R, Watson AJ, Weiss R, Wong CS,Yoshikawa-Inoue H (2013) A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT). Earth Syst Sci Data 5:125–143. doi: 10.5194/essd-5-125-2013Google Scholar
  267. Philippot L (2002) Denitrifying genes in bacterial and Archaeal genomes. Biochim Biophys Acta Gene Struct Expr 1577(3):355–376Google Scholar
  268. Plattner G-K, Frenzel H, Gruber N, Leinweber A, McWilliams JC (2004) Changing winds and coastal carbon cycle: a case study for an upwelling region. The ocean in a high-CO2 world. UNESCO, ParisGoogle Scholar
  269. Plummer DH, Owens NJP, Herbert RA (1987) Bacteria-particle interactions in turbid estuarine environments. Cont Shelf Res 7:1429–1433. doi: 10.1016/0278-4343(87)90050-1CrossRefGoogle Scholar
  270. Prytherch J, Yelland MJ, Pascal RW, Moat BI, Skjelvan I, Srokosz MA (2010) Open ocean gas transfer velocity derived from long-term direct measurements of the CO2 flux. Geophys Res Lett 37, L23607. doi: 10.1029/2010GL045597CrossRefGoogle Scholar
  271. Ramesh R, Purvaja R, Neetha V, Divia J, Barnes J, Upstill-Goddard RC (2007) CO2 and CH4 emissions from Indian mangroves and surrounding waters. In: Tateda Y, Upstill-Goddard RC, Goreau T, Alongi D, Nose A, Kristensen E, Wattayakorn G (eds) Greenhouse gas and carbon balances in mangrove coastal ecosytems. Gendai Tosho, Kanagawa, pp 153–164Google Scholar
  272. Rangama Y, Boutin J, Etcheto J, Merlivat L, Takahashi T, Delille B, Frankignoulle M, Bakker DCE (2005) Variability of the net air-sea CO2 flux inferred from shipboard and satellite measurements in the Southern Ocean south of Tasmania and New Zealand. J Geophys Res 110:1–17.C09005. doi:  10.1029/2004JC002619Google Scholar
  273. Raven J, Caldeira K, Elderfield H, Hoegh-Guldberg O, Liss P, Riebesell U, Shepherd J, Turley C, Watson AJ (2005) Ocean acidification due to increasing atmospheric carbon dioxide, vol 12/05, Policy document. The Royal Society, LondonGoogle Scholar
  274. Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125Google Scholar
  275. Reagan MT, Moridis GJ (2009) Large-scale simulation of methane hydrate dissociation along the West Spitsbergen Margin. Geophys Res Lett 36, L23612. doi: 10.1029/2009GL041332CrossRefGoogle Scholar
  276. Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of seawater. In: Hill MN (ed) The sea, vol 2. Wiley Interscience, New York, pp 26–77Google Scholar
  277. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107(2):486–513Google Scholar
  278. Rehder G, Keir RS, Suess E, Pohlmann T (1998) The multiple sources and patterns of methane in North Sea waters. Aquat Geochem 4:403–427Google Scholar
  279. Rhee TS, Kettle AJ, Andreae MO (2009) Methane and nitrous oxide emissions from the ocean: a reassessment using basin-wide observations in the Atlantic. J Geophys Res 114, D12304. doi: 10.1029/2008JD011662CrossRefGoogle Scholar
  280. Riebesell U, Schulz KG, Bellerby RGJ, Botros M, Fritsche P, Meyerhofer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zollner E (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545–548Google Scholar
  281. Rigby M, Prinn RG, Fraser PJ, Simmonds PG, Langenfelds RL, Huang J, Cunnold DM, Steele LP, Krummel PB, Weiss RF, O’Doherty S, Salameh PK, Wang HJ, Harth CM, Mühle J, Porter LW (2008) Renewed growth of atmospheric methane. Geophys Res Lett 35, L22805. doi: 10.1029/2008GL036037CrossRefGoogle Scholar
  282. Rixen T, Haake B, Ittekkot V, Guptha MVS, Nair RR, Schlüssel P (1996) Coupling between SW monsoon-related surface and deep ocean processes as discerned from continuous particle flux measurements and correlated satellite data. J Geophys Res 101:28569–28582Google Scholar
  283. Robertson JE, Watson AJ (1992) Thermal skin effect of the surface ocean and its implications for CO2 uptake. Nature 358:738–740Google Scholar
  284. Romanovski NN, Hubberten H-W, Gavrilov AV, Eliseeva AA, Tipenkio GS (2005) Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-Mar Lett 25(2–3):167–182. doi: 10.1007/s00367-004-0198-6CrossRefGoogle Scholar
  285. Rost B, Riebesell U (2004) Coccolithophores and the biological pump: responses to environmental changes. In: Thierstein HR, Young JR (eds) Coccolithophores: from molecular processes to global impact. Springer, Berlin, pp 99–125Google Scholar
  286. Roy T, Bopp L, Gehlen M, Schneider B, Cadule P, Fröhlicher TL, Segschneider J, Tjiputra J, Heinze C, Joos F (2011) Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multimodel linear feedback analysis. J Climate 24(9):2300–2318. doi: 10.1175/2010JCLI3787.1CrossRefGoogle Scholar
  287. Rysgaard S, Bendtsen J, Delille B, Dieckmann GS, Glud R, Kennedy H, Mortensen J, Papadimitriou S, Thomas DN, Tison JL (2011) Sea ice contribution to the air–sea CO2 exchange in the Arctic and Southern Oceans. Tellus 63B(5):1–8. doi: 10.1111/j.1600-0889.2011.00571.xCrossRefGoogle Scholar
  288. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Ríos AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371Google Scholar
  289. Sabine CL, Hankin S, Koyuk H, Bakker DCE, Pfeil B, Olsen A, Metzl N, Kozyr A, Fassbender A, Manke A, Malczyk J, Akl J, Alin SR, Bellerby RGJ, Borges A, Boutin J, Brown PJ, Cai W-J, Chavez FP, Chen A, Cosca C, Feely RA, González-Dávila M, Goyet C, Hardman-Mountford N, Heinze C, Hoppema M, Hunt CW, Hydes D, Ishii M, Johannessen T, Key RM, Körtzinger A, Landschützer P, Lauvset SK, Lefèvre N, Lenton A, Lourantou A, Merlivat L, Midorikawa T, Mintrop L, Miyazaki C, Murata A, Nakadate A, Nakano Y, Nakaoka S, Nojiri Y, Omar AM, Padin XA, Park G-H, Paterson K, Perez FF, Pierrot D, Poisson A, Ríos AF, Salisbury J, Santana-Casiano JM, Sarma VVSS, Schlitzer R, Schneider B, Schuster U, Sieger R, Skjelvan I, Steinhoff T, Suzuki T, Takahashi T, Tedesco K, Telszewski M, Thomas H, Tilbrook B, Vandemark D, Veness T, Watson AJ, Weiss R, Wong CS, Yoshikawa-Inoue H (2013) Gridding of the Surface Ocean CO2 Atlas (SOCAT) Gridded data products. Earth Syst Sci Data 5:145–153. doi: 10.5194/essd-5-145-2013CrossRefGoogle Scholar
  290. Santana-Casiano JM, González-Dávila M (2011) pH decrease and effects on the chemistry of seawater. In: Duarte P, Santana-Casiano JM (eds) Oceans and the atmospheric carbon content. Springer, Berlin, pp 95–114Google Scholar
  291. Santana-Casiano JM, González-Davila M, Millero FJ (2006) The role of Fe(II) species on the oxidation of Fe(II) in natural waters in the presence of O2 and H2O2. Mar Chem 99:70–82Google Scholar
  292. Santoro AE, Buchwald C, McIlvin MR, Casciotti KL (2011) Isotopic signature of N2O produced by marine ammonia-oxidizing archaea. Science 333(6047):1282–1285. doi: 10.1126/science.1208239CrossRefGoogle Scholar
  293. Sarmiento JL, Gruber N (2002) Sinks for anthropogenic carbon. Phys Today 55:30–36Google Scholar
  294. Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, PrincetonGoogle Scholar
  295. Sarmiento JL, Sundquist ET (1992) Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356:589–593Google Scholar
  296. Sarmiento JL, Orr JC, Siegenthaler U (1992) A perturbation simulation of CO2 uptake in an ocean general circulation model. J Geophys Res 97(C3):3621–3646Google Scholar
  297. Sarmiento JL, Dunne J, Gnanadesikan A, Key RM, Matsumoto K, Slater R (2002) A new estimate of the CaCO3 to organic carbon export ratio. Global Biogeochem Cycle 16(4):1107. doi: 10.1029/2002GB001919CrossRefGoogle Scholar
  298. Sasakawa M, Tsunogai U, Kameyama S, Nakagawa F, Nojiri Y, Tsuda A (2008) Carbon isotopic characterization for the origin of excess methane in subsurface seawater. J Geophys Res 113, C03012. doi: 10.1029/2007JC004217CrossRefGoogle Scholar
  299. Schlünz B, Schneider RR (2000) Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux and burial rates. Int J Earth Sci 88:599–606Google Scholar
  300. Schmale O, Greinert J, Rehder G (2005) Methane emission from high intensity marine gas-seeps in the Black Sea into the atmosphere. Geophys Res Lett 32, L07609. doi: 10.1029/2004GL021138CrossRefGoogle Scholar
  301. Schmidt GA, Shindell DT (2003) Atmospheric composition, radiative forcing, and climate change as a consequence of a massive methane release from gas hydrates. Paleoceanography 18(1):1004. doi: 10.1029/2002PA000757CrossRefGoogle Scholar
  302. Schuster U, Watson AJ (2007) A variable and decreasing sink for atmospheric CO2 in the North Atlantic. J Geophys Res 112(C11), C11006Google Scholar
  303. Schuster U, Watson AJ, Bates NR, Corbière A, González-Dávila M, Metzl N, Pierrot D, Santana-Casiano M (2009) Trends in North Atlantic sea-surface fCO2 from 1990 to 2006. Deep-Sea Res Part II 56(8–10):620–629Google Scholar
  304. Scranton MI, McShane K (1991) Methane fluxes in the southern North Sea: the role of European rivers. Cont Shelf Res 11:37–52Google Scholar
  305. Seitzinger SP, Kroeze C (1998) Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Global Biogeochem Cycle 12:93–113Google Scholar
  306. Seitzinger SP, Kroeze C, Bouwman AE, Caraco N, Dentener F, Styles RV (2002) Global patterns of dissolved inorganic and particulate nitrogen inputs to coastal systems. Estuaries 25:640–655Google Scholar
  307. Shakhova N, Semiletov I (2007) Methane release and coastal environment in the East Siberian Arctic shelf. J Mar Syst 66:227–243Google Scholar
  308. Shakhova N, Semiletov I, Salyuk AN, Belcheva N, Kosmach D (2007) Methane anomalies in the near-water atmospheric layer above the shelf of East Siberian Arctic Shelf. Trans Russ Acad Sci 415:764–768Google Scholar
  309. Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson O (2010) Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 327:1246–1250. doi: 10.1126/science.1182221CrossRefGoogle Scholar
  310. Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36, L05606. doi:1029/2008GL036282Google Scholar
  311. Sloan ED (2003) Fundamental principles and applications of natural gas hydrates. Nature 426:353–363. doi: 10.1038/nature02135CrossRefGoogle Scholar
  312. Sloan ED, Koh CA (2008) Clathrate hydates of natural gases, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  313. Smith SV, Hollibaugh JT (1993) Coastal metabolism and the oceanic carbon balance. Rev Geophys 31:75–89Google Scholar
  314. Smith SV, Mackenzie FT (1987) The ocean as a net heterotrophic system: implications from the carbon biogeochemical cycle. Global Biogeochem Cycles 1:187–198Google Scholar
  315. Smith SV, Swaney DP, Talaue-McManus L, Bartley JD, Sandhei PT, McLaughlin CJ, Dupra VC, Crossland CJ, Buddemeier RW, Maxwell BA, Wulff F (2003) Humans, hydrology, and the distribution of inorganic nutrient loading to the ocean. Bioscience 53:235–245Google Scholar
  316. Sowers TA, Alley R, Jubenville J (2003) Elemental and isotopic records of atmospheric nitrous oxide covering the last 106,000 years from the GISP II and Taylor Dome ice cores. Science 301:945–948Google Scholar
  317. Spahni R, Chappellaz J, Stocker TF, Loulergue L, Hausammann G, Kawamura K, Flückiger J, Schwander J, Raynaud D, Masson-Delmotte V, Jouzel J (2005) Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science 310(5752):1317–1321Google Scholar
  318. Stramma L, Johnson GC, Sprintall J, Mohrholz V (2008) Expanding oxygen-minimum zones in the tropical oceans. Science 320:655–658Google Scholar
  319. Stramma L, Schmidtko S, Levin A, Johnson GC (2010) Ocean oxygen minima expansions and their biological impacts. Deep-Sea Res Part I 57(4):587–595Google Scholar
  320. Suntharalingam P, Sarmiento JL (2000) Factors governing the oceanic nitrous oxide distribution: simulations with an ocean general circulation model. Global Biogeochem Cycle 14:429–454Google Scholar
  321. Suykens K, Delille B, Chou L, De Bodt C, Harlay J, Borges AV (2010) Dissolved inorganic carbon dynamics and air-sea carbon dioxide fluxes during coccolithophore blooms in the northwest European continental margin (northern Bay of Biscay). Global Biogeochem Cycle 24, GB3022. doi: 10.2029/2009GB003730CrossRefGoogle Scholar
  322. Suzuki A, Kawahata K (2004) Reef water CO2 system and carbon production of coral reefs: topographic control of system-level perfrormance. In: Shiyomi M, Kawahata H, Koizumi H, Tsuda A, Awaya Y (eds) Global environmental change in the ocean and on land. Terrapub, Tokyo, pp 229–248Google Scholar
  323. Suzuki T, Ishii M, Aoyama M, Christian JR, Enyo K, Kawano T, Key RM, Kosugi N, Kozyr A, Miller LA, Murata A, Nakano T, Ono T, Saino T, Sasaki K, Sasano D, Takatani Y, Wakita M, Sabine CL (2013) PACIFICA Data Synthesis Project. ORNL/CDIAC-159, NDP-092. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA. doi: 10.3334/CDIAC/OTG.PACIFICA_NDP092
  324. Sweeney C, Gloor E, Jacobson AR, Key RM, McKinley G, Sarmiento JL, Wanninkhof R (2007) Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochem Cycle 21, GB2015. doi: 10.1029/2006GB002784CrossRefGoogle Scholar
  325. Takahashi T, Feely RA, Weiss RF, Wanninkhof RH, Chipman DW, Sutherland SC, Takahashi TT (1997) Global air-sea flux of CO2: an estimate based on measurements of sea-air pCO2 difference. Proc Natl Acad Sci USA 94:8292–8299Google Scholar
  326. Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof RH, Feely RA, Sabine CL, Olafsson J, Nojiri Y (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res Part II 49:1601–1622Google Scholar
  327. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson AJ, Bakker DCE, Schuster U, Metzl N, Inoue HY, Ishii M, Midorikawa T, Nojiri Y, Koertzinger A, Steinhoff T, Hoppema JMJ, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong CS, Delille B, Bates NR, de Baar HJW (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res Part II 56:544–577. doi: 10.1016/j.dsr2.2008.12.009CrossRefGoogle Scholar
  328. Takahashi T, Sutherland SC, Kozyr A (2011) Global ocean surface water partial pressure of CO2 database: Measurements performed during 1957–2010 (Version 2010). ORNL/CDIAC-159, NDP-088(V2010). Carbon Dioxide Information Analysis Center, Oak Ridge Nat. Lab., US Department of Energy, Oak Ridge, Tenn, doi:10.3334/CDIAC/otg.ndp088(V2010)Google Scholar
  329. Tanhua T, van Heuven S, Key RM, Velo A, Olsen A, Schirnick C (2010) Quality control procedures and methods of the CARINA database. Earth Syst Sci Data 2:35–49. doi: 10.5194/essd-2-35-2010CrossRefGoogle Scholar
  330. Telszewski M, Chazottes A, Schuster U, Watson AJ, Moulin C, Bakker DCE, González-Dávila M, Johannessen T, Körtzinger A, Lüger H, Olsen A, Omar A, Padin XA, Ríos A, Steinhoff T, Santana-Casiano M, Wallace DWR, Wanninkhof RH (2009) Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network. Biogeosciences 6:1405–1421, http://www.biogeosciences.net/6/1405/2009Google Scholar
  331. Thomas H, Bozec Y, Elkalay K, de Baar HJW (2004) Enhanced open ocean storage of CO2 from shelf sea pumping. Science 304(5673):1005–1008Google Scholar
  332. Thomas H, Prowe F, van Heuven S, Bozec Y, de Baar HJW, Schiettecatte L-S, Suykens K, Koné M, Borges AV, Lima ID, Doney SC (2007) Rapid decline of the CO2 buffering capacity in the North Sea and implications for the North Atlantic Ocean. Global Biogeochem Cycle 21, GB4001. doi: 10.1029/2006GB002825CrossRefGoogle Scholar
  333. Thomas H, Prowe AEF, Lima I, Doney SC, Wanninkhof R, Greatbatch RJ, Schuster U, Corbière A (2008) Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past 2 decades. Global Biogeochem Cycle 22, GB4027. doi: 10.1029/2007GB003167CrossRefGoogle Scholar
  334. Tréhua AM, Longb PE, Torresa ME, Bohrmannc G, Rackd FR, Collette TS, Goldbergf DS, Milkovg AV, Riedelh M, Schultheissi P, Bangsj NL, Barrk SR, Borowskil WS, Claypoolm GE, Delwichen ME, Dickenso GR, Graciap E, Guerinf G, Hollandq M, Johnsona JE, Leer Y-J, Lius C-S, Sut X, Teichertu B, Tomaruv H, Vannestew M, Watanabex M, Weinbergery JL (2004) Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204. Earth Planet Sci Lett 222:845–862Google Scholar
  335. Tsai W, Liu K-K (2003) An assessment of the effect of sea surface surfactant on global atmosphere–ocean CO2 flux. J Geophys Res 108:3127. doi: 10.1029/2000JC000740CrossRefGoogle Scholar
  336. Tsunogai S, Watanabe S, Sato T (1999) Is there a “continental shelf pump” for the absorption of atmospheric CO2? Tellus 51B(3):701–712Google Scholar
  337. Uncles RJ, Stephens JA (1993) The freshwater‐saltwater interface and its relationship to the turbidity maximum in the Tamar estuary, United Kingdom. Estuaries 16:126–141. doi: 10.2307/1352770CrossRefGoogle Scholar
  338. Upstill-Goddard RC (2006) Air-sea exchange in the coastal zone. Estuar Coast Shelf Sci 70:388–404Google Scholar
  339. Upstill-Goddard RC (2011) The production of trace gases in the estuarine and coastal environment. In: Wolanski E, McLusky DS (eds) Treatise on estuarine and coastal science, vol 2, Geochemistry of estuaries and coasts. Elsevier, Amsterdam, pp 271–309Google Scholar
  340. Upstill-Goddard RC, Owens NJP, Barnes J (1999) Nitrous oxide and methane during the 1994 SW monsoon in the Arabian Sea/northwestern Indian Ocean. J Geophys Res 104:30067–30084Google Scholar
  341. Upstill-Goddard RC, Barnes J, Frost T, Punshon S, Owens NJP (2000) Methane in the southern North Sea: low-salinity inputs, estuarine removal, and atmospheric flux. Global Biogeochem Cycle 14:1205–1217Google Scholar
  342. Van der Nat F-JWA, Middelburg JJ (1998) Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquat Bot 61(2):95–110Google Scholar
  343. Van der Nat F-JWA, Middleburg JJ (2000) Methane emission from tidal freshwater marshes. Biogeochemistry 49(2):103–121Google Scholar
  344. Van der Nat F-JWA, Middelburg JJ, Van Meteren D, Wielemakers A (1998) Diel methane emissions patterns from Scirpus lacustris and Phragmites australis. Biogeochemistry 41:1–22Google Scholar
  345. Van Scoy KA, Morris KP, Robertson JE, Watson AJ (1995) Thermal skin effect and the air-sea flux of carbon dioxide: a seasonal high-resolution estimate. Global Biogeochem Cycle 9(2):253–262Google Scholar
  346. Volk T, Hoffert MI (1985) Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist E, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archean to present, vol 32, American Geophysical Union Geophysical Monograph. American Geophysical Union, Washington, DC, pp 99–110Google Scholar
  347. Wakelin SL, Holt JT, Blackford JC, Allen JI, Butenschön M, Artioli Y (2012) Modeling the carbon fluxes of the northwest European continental shelf: validation and budgets. J Geophys Res 117, C05020. doi: 10.1029/2011JC007402CrossRefGoogle Scholar
  348. Walsh JJ (1988) On the nature of continental shelves. Academic Press, San DiegoGoogle Scholar
  349. Walter S, Bange HW, Breitenbach U, Wallace DWR (2006) Nitrous oxide in the North Atlantic Ocean. Biogeosciences 3:607–619Google Scholar
  350. Wanninkhof RH (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97(C5):7373–7382Google Scholar
  351. Wanninkhof RH, McGillis WR (1999) A cubic relationship between air-sea CO2 exchange and wind speed. Geophys Res Lett 26(13):1889–1892Google Scholar
  352. Wanninkhof RH, Asher WE, Ho DT, Sweeney C, McGillis WR (2009) Advances in quantifying air-sea gas exchange and environmental forcing. Annu Rev Mar Sci 1:213–244Google Scholar
  353. Watson AJ, Orr JC (2003) Carbon dioxide fluxes in the global ocean. In: Fasham MJR (ed) Ocean biogeochemistry: a JGOFS synthesis, Global change. IGBP series. Springer, Berlin, pp 123–143Google Scholar
  354. Watson AJ, Schuster U, Bakker DCE, Bates N, Corbière A, González-Dávila M, Friedrich T, Hauck J, Heinze C, Johannessen T, Körtzinger A, Metzl N, Olaffson J, Oschlies A, Pfeil B, Olsen A, Oschlies A, Santano-Casiano JM, Steinhoff T, Telszewski M, Ríos A, Wallace DWR, Wanninkhof RH (2009) Tracking the variable North Atlantic sink for atmospheric CO2. Science 326(5958):1391–1393Google Scholar
  355. Wayne RP (2000) Chemistry of atmospheres, 3rd edn. Oxford University Press, Oxford, 775 ppGoogle Scholar
  356. WDCGG (2012) World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) Data. Greenhouse gases and other atmospheric gases. WMO WDCGG (World Data Centre for Greenhouses Gases) 36(4). Japan Meteorological Agency and the WMO, Tokyo, p. 100Google Scholar
  357. Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–205Google Scholar
  358. Weiss RF, Van Woy FA, Salameh PK (1992) Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1990. Scripps Institution of Oceanography reference 92–11, ORNL/CDIAC-59, NDP-044, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, USAGoogle Scholar
  359. Westbrook GK, Thatcher KE, Rohling EJ, Piotrowski AM, Palike H, Osborne AH, Nisbet EG, Minshull TA, Lanoiselle M, James RH, Huhnerbach V, Green D, Fisher RE, Crocker AJ, Chabert A, Bolton C, Beszczynska-Moller A, Berndt C, Aquilina A (2009) Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys Res Lett 36, L15608. doi: 10.1029/2009GL039191CrossRefGoogle Scholar
  360. Wetzel P, Winguth A, Maier-Reimer E (2005) Sea-to-air fluxes CO2 fluxes from 1948 to 2003: a model study. Global Biogeochem Cycle 19, GB2005. doi: 10.1029/2004GB002339CrossRefGoogle Scholar
  361. Wever TF, Abegg F, Fiedler HM, Fechner G, Stender IH (1998) Shallow gas in the muddy sediments of Eckernförde Bay, Germany. Cont Shelf Res 18:1715–1739Google Scholar
  362. Wittke F, Kock A, Bange HW (2010) Nitrous oxide emissions from the upwelling off Mauritania (NW Africa). Geophys Res Lett 37, L12601. doi: 10.1029/2010GL042442CrossRefGoogle Scholar
  363. Wollast R (1998) Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean. In: Brink KH, Robinson AR (eds) The global coastal ocean. Wiley, New York, pp 213–252Google Scholar
  364. Wollast R, Chou L (2001) The carbon cycle at the ocean margin in the northern Gulf of Biscay. Deep-Sea Res Part II 48:3265–3293Google Scholar
  365. Wong CS, Christian JR, Wong S-KE, Page J, Xie L, Johannessen S (2010) Carbon dioxide in surface sea water of the eastern North Pacific Ocean (Line P), 1973–2005. Deep-Sea Res Part I 57:687–695Google Scholar
  366. Woodwell GM, Rich PH, Hall CAS (1973) Carbon in estuaries. In: Woodwell GM, Pecan EV (eds) Carbon and the biosphere. United States Atomic Energy Commission, Springfield, pp 221–240Google Scholar
  367. Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Damste JSS (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103(33):12317–12322Google Scholar
  368. Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Damste JSS (2007) Archaeal nitrification in the ocean (vol 103, pg 12317, 2006). Proc Natl Acad Sci USA 104(13):5704–5704Google Scholar
  369. Yavitt JB, Fahey TJ (1991) Production of methane and nitrous oxide by organic soils within a northern hardwood forest ecosystem. In: Oremland RS (ed) Biogeochemistry of global change: radiatively active trace gases. Chapman and Hall, New York, pp 261–277Google Scholar
  370. Yoshida O, Inoue HY, Watanabe S, Suzuki K, Noriki S (2011) Dissolved methane distribution in the South Pacific and the Southern Ocean in austral summer. J Geophys Res 116, C07008. doi: 10.1029/2009JC006089CrossRefGoogle Scholar
  371. Zhang G-L, Zhang J, Liu SM, Ren J-L, Xu J, Zhang F (2008) Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area: riverine input, sediment release and atmospheric fluxes. Biogeochemistry 91:71–84Google Scholar
  372. Zhang G-L, Zhang J, Liu S-M, Ren J-L, Zhao Y-C (2010) Nitrous oxide in the Changjiang (Yangtze River) estuary and its adjacent marine area: riverine input, sediment release and atmospheric fluxes. Biogeosciences 7:3505–3516Google Scholar
  373. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616Google Scholar

Copyright information

© The Author(s) 2014

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Centre for Ocean and Atmospheric Sciences, School of Environmental SciencesUniversity of East AngliaNorwichUK
  2. 2.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  3. 3.Institute of Biogeochemistry and Pollutant DynamicsETH ZürichZürichSwitzerland
  4. 4.Geophysical Institute & Bjerknes Centre for Climate ResearchUniversity of BergenBergenNorway
  5. 5.School of Marine Science and TechnologyNewcastle UniversityNewcastle upon TyneUK
  6. 6.Chemical Oceanography Unit, Institut de Physique (B5)University of LiègeLiègeBelgium
  7. 7.Chemical Oceanography UnitUniversity of LiègeLiègeBelgium
  8. 8.Institute of MicrobiologyChristian-Albrechts University KielKielGermany
  9. 9.CSIR-National Institute of OceanographyDona PaulaIndia
  10. 10.Bjerknes Centre for Climate Research, Uni ResearchBergenNorway
  11. 11.Facultad de Ciencias del MarUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations