Skip to main content

Nonlinear Optomechanical System for Probing Mechanical Energy Quantization

  • Chapter
  • First Online:
Book cover Exploring Macroscopic Quantum Mechanics in Optomechanical Devices

Part of the book series: Springer Theses ((Springer Theses))

  • 893 Accesses

Abstract

In the previous chapters, we have been discussing linear optomechanical devices, of which the dynamics are quantified by linear equations of motion. Motivated by the pioneering theoretical work of Santamore (Phys Rev B 70:144301, 2004) Martin and Zureck (Phys Rev Lett 98:120401, 2007), and by recent experimental work of Thompson et al. (Nature 452:72–75, 2008), we consider the quantum limit for probing mechanical energy quantization with mechanical modes parametrically coupled to external degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A similar configuration has been proposed by Braginsky et al. for detecting gravitational-waves, Phys. Lett. A 232, 340 (1997) and Phys. Lett. A 246, 485 (1998).

References

  1. M. Bhattacharya, P. Meystre, Trapping and cooling a mirror to its quantum mechanical ground state. Phys. Rev. Lett. 99, 073601 (2007)

    Article  ADS  Google Scholar 

  2. A.A. Clerk, D.W. Utami, Using a qubit to measure photon-number statistics of a driven thermal oscillator. Phys. Rev. A 75, 042302 (2007)

    Article  ADS  Google Scholar 

  3. A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf (2008) Introduction to quantum noise, measurement and amplification, arXiv:0810.4729

    Google Scholar 

  4. F. Elste, S.M. Girvin, A.A. Clerk, Quantum noise interference and backaction cooling in cavity nanomechanics. Phys. Rev. Lett. 102, 207209 (2009)

    Article  ADS  Google Scholar 

  5. C. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, 2004)

    MATH  Google Scholar 

  6. K. Jacobs, P. Lougovski, M. Blencowe, Continuous measurement of the energy eigenstates of a nanomechanical resonator without a nondemolition probe. Phys. Rev. Lett. 98, 147201 (2007)

    Article  ADS  Google Scholar 

  7. A.M. Jayich, J.C. Sankey, B.M. Zwickl, C. Yang, J.D. Thompson, S.M. Girvin, A.A. Clerk, F. Marquardt, J.G.E. Harris, Dispersive optomechanics: a membrane inside a cavity. New J Phys 10(9), 095008 (2008)

    Article  Google Scholar 

  8. S. Mancini, D. Vitali, P. Tombesi, Scheme for teleportation of quantum states onto a mechanical resonator. Phys. Rev. Lett. 90, 137901 (2003)

    Article  ADS  Google Scholar 

  9. F. Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  Google Scholar 

  10. I. Martin, W.H. Zurek, Measurement of energy eigenstates by a slow detector. Phys. Rev. Lett. 98, 120401 (2007)

    Article  ADS  Google Scholar 

  11. H. Miao, S. Danilishin, T. Corbitt, Y. Chen, Standard quantum limit for probing mechanical energy quantization. Phys. Rev. Lett. 103, 100402 (2009)

    Article  ADS  Google Scholar 

  12. H. Mueller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, Y. Chen, Entanglement of Macroscopic Test Masses and the Standard Quantum Limit in Laser Interferometry. Phys. Rev. Lett. 100, 013601 (2008)

    Article  ADS  Google Scholar 

  13. A. Naik, O. Buu, M.D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, K.C. Schwab, Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006)

    Article  ADS  Google Scholar 

  14. D.H. Santamore, A.C. Doherty, M.C. Cross, Quantum nondemolition measurement of Fock states of mesoscopic mechanical oscillators. Phys. Rev. B 70, 144301 (2004)

    Article  ADS  Google Scholar 

  15. D.I. Schuster, A.A. Houck, J.A. Schreier, A. Wallraff, J.M. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007)

    Article  ADS  Google Scholar 

  16. J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G.E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008)

    Article  ADS  Google Scholar 

  17. D. Vitali, S. Gigan, A. Ferreira, H.R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixing Miao .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miao, H. (2012). Nonlinear Optomechanical System for Probing Mechanical Energy Quantization. In: Exploring Macroscopic Quantum Mechanics in Optomechanical Devices. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25640-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25640-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25639-4

  • Online ISBN: 978-3-642-25640-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics