Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 912 Accesses

Abstract

Measuring weak forces lies in the heart of modern physics: on the small scale, atomic-force microscopy probes microscopic structures, or even Casimir force, by measuring the displacement of a micro-mechanical cantilever; on the large scale, gravitational-wave (GW) detectors search for ripples in spacetime, by measuring the differential displacements of spatially-separated test masses induced by tiny gravitational tidal forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006)

    Article  ADS  Google Scholar 

  2. D. Bouwmeester, A. Ekert, A. Zeilinger, The Physics of Quantum Information (Springer, Berlin, 2002)

    Google Scholar 

  3. V.B. Braginsky, Y.I. Vorontsov, K.S. Thorne, Quantum nondemolition measurements. Science 209, 547–557 (1980)

    Article  ADS  Google Scholar 

  4. A. Buonanno, Y. Chen, Quantum noise in second generation, signalrecycled laser interferometric gravitational-wave detectors. Phys. Rev. D 64, 042006 (2001)

    Article  ADS  Google Scholar 

  5. Y. Chen, Sagnac interferometer as a speed-meter-type, quantumnondemolition gravitational-wave detector. Phys. Rev. D 67, 122004 (2003)

    Article  ADS  Google Scholar 

  6. P.F. Cohadon, A. Heidmann, M. Pinard, Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174 (1999)

    Article  ADS  Google Scholar 

  7. LIGO Scientific Collaboration, Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics 11(7), 073032 (2009)

    Google Scholar 

  8. T. Corbitt, N. Mavalvala, S. Whitcomb, Optical cavities as amplitude filters for squeezed fields. Phys. Rev. D 70, 022002 (2004)

    Article  ADS  Google Scholar 

  9. T. Corbitt, Y. Chen, E. Innerhofer, H. Mueller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, N. Mavalvala, An All-Optical Trap for a Gram-Scale Mirror. Phys. Rev. Lett. 98, 150802–4 (2007)

    Google Scholar 

  10. T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, N. Mavalvala, Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys. Rev. Lett. 99, 160801–4 (2007)

    Article  ADS  Google Scholar 

  11. S.L. Danilishin, Sensitivity limitations in optical speed meter topology of gravitational-wave antennas. Phys. Rev. D 69, 102003 (2004)

    Article  ADS  Google Scholar 

  12. S. Danilishin, H. Mueller-Ebhardt, H. Rehbein, K. Somiya, R. Schnabel, K. Danzmann, T. Corbitt, C. Wipf, N. Mavalvala, Y. Chen, Creation of a quantum oscillator by classical control, arXiv:0809.2024 (2008)

    Google Scholar 

  13. A.C. Doherty, K. Jacobs, Feedback control of quantum systems using continuous state estimation. Phys. Rev. A 60, 2700 (1999)

    Article  ADS  Google Scholar 

  14. A.C. Doherty, S.M. Tan, A.S. Parkins, D.F. Walls, State determination in continuous measurement. Phys. Rev. A 60, 2380 (1999)

    Article  ADS  Google Scholar 

  15. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47, 777 (1935)

    Article  MATH  ADS  Google Scholar 

  16. I. Favero, C. Metzger, S. Camerer, D. Konig, H. Lorenz, J.P. Kotthaus, K. Karrai, Optical cooling of a micromirror of wavelength size. Appl. Phys. Lett. 90, 104101–3 (2007)

    Article  ADS  Google Scholar 

  17. C. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, 2004)

    MATH  Google Scholar 

  18. F.J. Giessibl, Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949 (2003)

    Article  ADS  Google Scholar 

  19. S. Gigan, H.R. Böhm, M. Paternostro, F. Blaser, G. Langer, J.B. Hertzberg, K.C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger, Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006)

    Google Scholar 

  20. S. Gröblacher, S. Gigan, H.R. Bohm, A. Zeilinger, M. Aspelmeyer, Radiation-pressure self-cooling of a micromirror in a cryogenic environment. EPL (Europhys. Lett.) 81(5), 54003 (2008)

    Google Scholar 

  21. S. Gröblacher, J.B. Hertzberg, M.R. Vanner, G.D. Cole, S. Gigan, K.C. Schwab, M. Aspelmeyer, Demonstration of an ultracold microoptomechanical oscillator in a cryogenic cavity. Nat Phys 5, 485–488 (2009)

    Google Scholar 

  22. M.J. Hartmann, M.B. Plenio, Steady state entanglement in the mechanical vibrations of two dielectric membranes. Phys. Rev. Lett. 101, 200503 (2008)

    Article  ADS  Google Scholar 

  23. A. Hopkins, K. Jacobs, S. Habib, K. Schwab, Feedback cooling of a nanomechanical resonator. Phys. Rev. B 68, 235328 (2003) Dec.

    Article  ADS  Google Scholar 

  24. http://geo600.aei.mpg.de

    Google Scholar 

  25. http://www.ligo.caltech.edu

    Google Scholar 

  26. http://www.virgo.infn.it

    Google Scholar 

  27. G. Jourdan, F. Comin, J. Chevrier, Mechanical mode dependence of bolometric backaction in an atomic force microscopy microlever. Phys. Rev. Lett. 101, 133904–4 (2008)

    Article  ADS  Google Scholar 

  28. M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004)

    Article  ADS  Google Scholar 

  29. F.Y. Khalili, Y. Levin, Speed meter as a quantum nondemolition measuring device for force. Phys. Rev. D 54, 004735 (1996)

    Article  ADS  Google Scholar 

  30. H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin, Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002 (2001)

    Article  ADS  Google Scholar 

  31. D. Kleckner, D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006)

    Article  ADS  Google Scholar 

  32. C.K. Law, H.J. Kimble, Deterministic generation of a bit-stream of single-photon pulses. J. Mod. Opt. 44(11), 2067–2074 (1997)

    ADS  Google Scholar 

  33. S. Mancini, V. Giovannetti, D. Vitali, P. Tombesi, Entangling macroscopic oscillators exploiting radiation pressure. Phys. Rev. Lett. 88, 120401 (2002)

    Article  ADS  Google Scholar 

  34. F. Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  Google Scholar 

  35. J. McKeever, A. Boca, A.D. Boozer, R. Miller, J.R. Buck, A. Kuzmich, H.J. Kimble, Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004)

    Article  ADS  Google Scholar 

  36. C.H. Metzger, K. Karrai, Cavity cooling of a microlever. Nature 432, 1002–1005 (2004)

    Article  ADS  Google Scholar 

  37. G.J. Milburn, Classical and quantum conditional statistical dynamics. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 8(1), 269 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  38. U. Mohideen, A. Roy, Precision measurement of the casimir force from 0.1 to 0.9 mum. Phys. Rev. Lett. 81, 4549 (1998)

    Article  ADS  Google Scholar 

  39. C.M. Mow-Lowry, A.J. Mullavey, S. Gossler, M.B. Gray, D.E. McClelland, Cooling of a gram-scale cantilever flexure to 70 mK with a servo-modified optical spring. Phys. Rev. Lett. 100, 010801–4 (2008)

    Google Scholar 

  40. H. Mueller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, Y. Chen, Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry. Phys. Rev. Lett. 100, 013601 (2008)

    Article  ADS  Google Scholar 

  41. A. Naik, O. Buu, M.D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, K.C. Schwab, Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006)

    Article  ADS  Google Scholar 

  42. M. Poggio, C.L. Degen, H.J. Mamin, D. Rugar, Feedback Cooling of a Cantilever’s Fundamental Mode below 5 mK. Phys. Rev. Lett. 99, 017201–4 (2007)

    Article  ADS  Google Scholar 

  43. P. Purdue, Analysis of a quantum nondemolition speed-meter interferometer. Phys. Rev. D 66, 022001 (2002)

    Article  ADS  Google Scholar 

  44. P. Purdue, Y. Chen, Practical speed meter designs for quantum nondemolition gravitational-wave interferometers. Phys. Rev. D 66, 122004 (2002)

    Article  ADS  Google Scholar 

  45. H. Rehbein, H. Müller-Ebhardt, K. Somiya, S.L. Danilishin, R. Schnabel, K. Danzmann, Y. Chen, Double optical spring enhancement for gravitational-wave detectors. Phys. Rev. D 78, 062003 (2008)

    Article  ADS  Google Scholar 

  46. S.W. Schediwy, C. Zhao, L. Ju, D.G. Blair, P. Willems, Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitationalwave detectors. Phys. Rev. A 77, 013813–5 (2008)

    Article  ADS  Google Scholar 

  47. A. Schliesser, P. Del’Haye, N. Nooshi, K.J. Vahala, T.J. Kippenberg, Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905–4 (2006)

    Article  ADS  Google Scholar 

  48. A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, T.J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008)

    Article  Google Scholar 

  49. J.D. Teufel, J.W. Harlow, C.A. Regal, K.W. Lehnert, Dynamical Backaction of Microwave Fields on a Nanomechanical Oscillator. Phys. Rev. Lett. 101, 197203–4 (2008)

    Article  ADS  Google Scholar 

  50. J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G.E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008)

    Article  ADS  Google Scholar 

  51. D. Vitali, S. Gigan, A. Ferreira, H.R. Bohm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  52. S.P. Vyatchanin, A.B. Matsko, Quantum limit on force measurements. JETP 77, 218 (1993)

    ADS  Google Scholar 

  53. S.P. Vyatchanin, E.A. Zubova, Quantum variation measurement of a force. Phys. Lett. A 201, 269–274 (1995)

    Article  ADS  Google Scholar 

  54. I. Wilson-Rae, N. Nooshi, W. Zwerger, T.J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixing Miao .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miao, H. (2012). Introduction. In: Exploring Macroscopic Quantum Mechanics in Optomechanical Devices. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25640-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25640-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25639-4

  • Online ISBN: 978-3-642-25640-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics