Skip to main content

Squeezing Two Mean Field Modes of a Bose–Einstein Condensate

  • Chapter
  • First Online:
Spin Squeezing and Non-linear Atom Interferometry with Bose-Einstein Condensates

Part of the book series: Springer Theses ((Springer Theses))

  • 649 Accesses

Abstract

Bose–Einstein condensation has been predicted in 1924/1925 by Satyendra Nath Bose and Albert Einstein. The Nobel prize 2001 was awarded to Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman for the first experimental observation of Bose–Einstein condensation in dilute gases of laser cooled alkali atoms in 1995. Almost 15 years later a whole new sub field of atomic physics developed dealing with Bose–Einstein condensates and degenerate Fermi gases. A lot of effort has been made, both experimentally and theoretically, to explore the basic physics of ultracold quantum degenerate gases. Extraordinary experimental control over the trapped quantum gases and the possibility to measure and adjust almost all relevant parameters directly (e.g. interaction strength, relative phases, ...) opens up a new route in atomic physics. The quantum gases can be used to engineer specific Hamiltonians that map for example to problems in solid state physics where some measurements are hard to perform and many parameters are not controllable. Ultracold quantum gases are promising candidates for quantum simulators of solid state systems. In the field of quantum metrology degenerate gases have been proposed to be one experimental system that allows for a precision beyond the “classical” projection noise limit in atom interferometry. Controllable many-body entanglement can be used as a resource to beat the standard quantum limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(2\pi\hbar\) is Planck’s constant and m the atomic mass.

  2. 2.

    The exact value depends on the density of states.

  3. 3.

    \(\phi_i\) is the normalized \(i{\text {th}}\) eigenfunction of the single particle Hamiltonian, \(V(\mathbf{r} - \mathbf{r}^{\prime})\) is the interatomic interaction potential, later approximated as a contact interaction \(V(\mathbf{r} - \mathbf{r}^{\prime}) \propto \delta(\mathbf{r} - \mathbf{r}^{\prime}).\)

  4. 4.

    The beam waist is \(5.1\,\mu{\text{m}}.\)

  5. 5.

    The barrier height is tunable between \(V_0 = 2\pi \cdot 250 \) Hz and \(V_0 = 2\pi \cdot 3{,}000 \) Hz.

  6. 6.

    A dependence of \(E_J(n)\) from the occupation number difference is omitted here, i.e. we assume \(n \ll N.\) This term is included in the discussion presented in Sect. 3.1.3.

  7. 7.

    \({n}_{l,r}(\mathbf{r})\) is the atomic density of the left (right) mode and \({n}_{l,r} = \int_{-\infty, 0}^{0,\infty} \hbox{d}\mathbf{r} {n}_{l,r}(\mathbf{r})\) the mode occupation number.

  8. 8.

    The authors of reference [39] show that the Heisenberg limit can be reached within a factor of two.

  9. 9.

    In the experiment we typically have \(T/{\rm 2}E_J,max\approx {\rm 10^{-2}}.\)

  10. 10.

    \(\hat{n}\) and \(\hat{\varphi}\) are symmetric variables in Eq.  (3.14). The fluctuations in the relative phase \(\Updelta{\hat{\varphi}}^2 \approx T/{E_{J}}\) are obtained in the same way as described for \(\Updelta{\hat{n}}^2 = \langle{\hat{n}^{2}}\rangle\), but replacing the matrix element by \(\langle{k}|{\hat{\varphi}^{2}}|{k}\rangle=( k+1/2)\sqrt{E_{C}/{E_{J}}}.\)

  11. 11.

    For our parameters \(E_{C,f}\approx E_{C,i} = E_C\) holds.

  12. 12.

    The frequency of this beam differs from the frequency of the main dipole beam by 30 MHz to average their interference pattern.

  13. 13.

    The thermal expansion coefficient of alluminium is ca. \(23\,\times\,10^{-6}\)/K at room temperature, leading to a temperature stability requirement of 10 mK over a few hours, the typical duration of the experiment.

  14. 14.

    We ramp from \(V_{0,i}=2\pi\cdot430\) Hz for all end values \(V_0\geq2\pi\cdot430\) Hz and from \(V_{0,i}= 2\pi\cdot250\) Hz for all other end values.

  15. 15.

    In the double-well case two more data points not shown in Fig. 3.18 between \(V_0=2\pi\cdot1{,}650\) Hz and \(V_0=2\pi \cdot1{,}800 \)Hz contribute to the averaging.

References

  1. Bose S (1924) Plancks Gesetz und Lichtquantenhypothese. Z Phys 26:178

    Article  MATH  ADS  Google Scholar 

  2. Einstein A (1924) Quantentheorie des einatomigen idealen Gases. Sitzungsber Kgl Preuss Akad Wiss 261

    Google Scholar 

  3. Einstein A (1925) Quantentheorie des einatomigen idealen Gases. Sitzungsber Kgl Preuss Akad Wiss 3

    Google Scholar 

  4. Anderson MH, Ensher JR, Matthews MR, Wieman CE, Cornell EA (1995) Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269:198–201

    Article  ADS  Google Scholar 

  5. Davis KB et al (1995) Bose–Einstein condensation in a gas of sodium atoms. Phys Rev Lett 75:3969–3973

    Article  ADS  Google Scholar 

  6. Bradley CC, Sackett CA, Hulet R G (1997) Bose–Einstein condensation of lithium: observation of limited condensate number. Phys Rev Lett 78:985–989

    Article  ADS  Google Scholar 

  7. Ketterle W (2002) Nobel lecture: when atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev Mod Phys 74:1131–1151

    Article  ADS  Google Scholar 

  8. Cornell EA, Wieman CE (2002) Nobel lecture: Bose–Einstein condensation in a dilute gas the first 70 years and some recent experiments. Rev Mod Phys 74:875–893

    Article  ADS  Google Scholar 

  9. Pethik H (2002) Bose–Einstein condensation in dilute gases. Cambridge University Press, Cambridge

    Google Scholar 

  10. Pitaevski L, Stringari S (2003) Bose–Einstein condensation. Oxford University Press, Oxford

    Google Scholar 

  11. Ketterle W, Durfee D, Stamper-Kurn D (1999) Making, probing and understanding Bose–Einstein condensates. arXiv:cond-mat/9904034v2

    Google Scholar 

  12. Feynman R (1982) Simulating physics with computers. Int J Theor Phys 21:467–488

    Article  MathSciNet  Google Scholar 

  13. Feynman R (1986) Quantum mechanical computers. Found Phys 16:507–531

    Article  MathSciNet  ADS  Google Scholar 

  14. Bloch I, Dalibard J, Zwerger W (2008) Many-body physics with ultracold gases. Rev Mod Phys 80:885

    Article  ADS  Google Scholar 

  15. Bouyer P, Kasevich MA (1997) Heisenberg-limited spectroscopy with degenerate Bose–Einstein gases. Phys Rev A 56:R1083–R1086

    Article  ADS  Google Scholar 

  16. Dowling JP (1998) Correlated input-port matter-wave interferometer: quantum-noise limits to the atom-laser gyroscope. Phys Rev A 57:4736–4746

    Article  MathSciNet  ADS  Google Scholar 

  17. Sørensen AS, Mølmer K (2001) Entanglement and extreme spin squeezing. Phys Rev Lett 86:4431–4434

    Article  ADS  Google Scholar 

  18. Dunningham JA, Burnett K, Barnett SM (2002) Interferometry below the standard quantum limit with Bose–Einstein condensates. Phys Rev Lett 89:150401

    Article  ADS  Google Scholar 

  19. Pezzé L, Smerzi A (2009) Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys Rev Lett 102:100401

    Article  MathSciNet  ADS  Google Scholar 

  20. Giovannetti V, Lloyd S Maccone L (2004) Quantum-enhanced measurements: beating the standard quantum limit. Science 306:1330–1336

    Article  ADS  Google Scholar 

  21. Giovannetti V, Lloyd S, Maccone L (2006) Quantum metrology. Phys Rev Lett 96:010401

    Article  MathSciNet  ADS  Google Scholar 

  22. Albiez M et al (2005) Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. Phys Rev Lett 95:10402

    Article  ADS  Google Scholar 

  23. Weller A (2008) Dynamics and interaction of dark solitons in Bose–Einstein condensates. Ph.D. thesis, University of Heidelberg

    Google Scholar 

  24. Albiez M (2005) Observation of nonlinear tunneling of a Bose–Einstein condensate in a single Josephson junction. Ph.D. thesis, University of Heidelberg

    Google Scholar 

  25. Gati R (2007) Bose–Einstein condensates in a single double well potential. Ph.D. thesis, University of Heidelberg

    Google Scholar 

  26. Grimm R, Weidemuller M, Ovchinnikov YB (2000) Optical dipole traps for neutral atoms. Adv At Mol Opt Phy 42:95

    Article  ADS  Google Scholar 

  27. Gati R, Albiez M, Fölling J, Hemmerling B, Oberthaler M (2006) Realization of a single Josephson junction for Bose–Einstein condensates. Appl Phys B 82:207–210

    Article  ADS  Google Scholar 

  28. Zapata I, Sols F, Leggett AJ (1998) Josephson effect between trapped Bose–Einstein condensates. Phys Rev A 57:R28–R31

    Article  ADS  Google Scholar 

  29. Milburn G, Corney J, Wright E, Walls D (1997) Quantum dynamics of an atomic Bose–Einstein condensate in a double-well potential. Phys Rev A 55:4318–4324

    Article  ADS  Google Scholar 

  30. Ananikian D, Bergeman T (2006) Gross–Pitaevskii equation for Bose particles in a double-well potential: two-mode models and beyond. Phys Rev A 73:13604

    Article  ADS  Google Scholar 

  31. Cohen-Tannoudji C, Dupont-Roc J, Grynberg G (1992) Atom-photon interactions: basic processes and applications. Wiley, New York

    Google Scholar 

  32. Leggett A (2001) Bose–Einstein condensation in the alkali gases: some fundamental concepts. Rev Mod Phys 73:307–356

    Article  ADS  Google Scholar 

  33. van Oosten D, van der Straten P, Stoof H (2003) Mott insulators in an optical lattice with high filling factors. Phys Rev A 67:33606

    Article  Google Scholar 

  34. Spekkens RW, Sipe JE (1999) Spatial fragmentation of a Bose–Einstein condensate in a double-well potential. Phys Rev A 59:3868–3877

    Article  ADS  Google Scholar 

  35. Raghavan S, Smerzi A, Fantoni S, Shenoy SR (1999) Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, \(\pi\) oscillations, and macroscopic quantum self-trapping. Phys Rev A 59:620–633

    Google Scholar 

  36. Cohen-Tannoudji C, Diu B, Laloe F (2005) Quantum mechanics. Wiley-VCH, New York

    Google Scholar 

  37. Pezzé L, Smerzi A, Berman GP, Bishop AR, Collins LA (2006) Nonlinear beam splitter in Bose–Einstein-condensate interferometers. Phys Rev A 74:033610

    Article  ADS  Google Scholar 

  38. Bodet C, Estève J, Oberthaler MK, Gasenzer T (2010) Two-mode Bose gas: beyond classical squeezing. Phys Rev 81:063605

    Article  ADS  Google Scholar 

  39. Pezzé L, Collins LA, Smerzi A, Berman GP, Bishop AR (2005) Sub-shotnoise phase sensitivity with a Bose–Einstein condensate Mach–Zehnder interferometer. Phys Rev A 72:043612

    Article  ADS  Google Scholar 

  40. Gati R, Hemmerling B, Fölling J, Albiez M, Oberthaler M (2006) Noise thermometry with two weakly coupled Bose–Einstein condensates. Phys Rev Lett 96:130404

    Article  ADS  Google Scholar 

  41. Pitaevskii L, Stringari S (2001) Thermal vs quantum decoherence in double well trapped Bose–Einstein condensates. Phys Rev Lett 87:180402

    Article  ADS  Google Scholar 

  42. Benson AK (1975) A procedure for obtaining quantum mechanical transformation of diagonalization from the classical. Int J Theor Phys 12:251–260

    Article  MathSciNet  MATH  Google Scholar 

  43. Gross C, Estève J, Oberthaler MK, Martin AD, Ruostekoski J (2011) Local and spatially extended sub–Poisson atom–number fluctuations in optical lattices. Phys Rev A 84:011609

    Google Scholar 

  44. Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11:1–21

    Article  Google Scholar 

  45. Estève J, Gross C, Weller A, Giovanazzi S, Oberthaler MK (2008) Squeezing and entanglement in a Bose–Einstein condensate. Nature 455:1216–1219

    Article  ADS  Google Scholar 

  46. Javanainen J, Ivanov M (1999) Splitting a trap containing a Bose–Einstein condensate: atom number fluctuations. Phys Rev A 60:2351–2359

    Article  ADS  Google Scholar 

  47. Grond J, Schmiedmayer J, Hohenester U (2009) Optimizing number squeezing when splitting a mesoscopic condensate. Phys Rev A 79:021603

    Article  ADS  Google Scholar 

  48. Grond J, von Winckel G, Schmiedmayer J, Hohenester U (2009) Optimal control of number squeezing in trapped Bose–Einstein condensates. Phys Rev A 80:053625

    Article  ADS  Google Scholar 

  49. Burt E et al (1997) Coherence, correlations, and collisions: what one learns about Bose–Einstein condensates from their decay. Phys Rev Lett 79:337–340

    Article  ADS  Google Scholar 

  50. Söding J et al (1999) Three-body decay of a rubidium Bose–Einstein condensate. Appl Phys B 69:257–261

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Groß, C. (2012). Squeezing Two Mean Field Modes of a Bose–Einstein Condensate. In: Spin Squeezing and Non-linear Atom Interferometry with Bose-Einstein Condensates. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25637-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25637-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25636-3

  • Online ISBN: 978-3-642-25637-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics