Skip to main content

Spin Squeezing, Entanglement and Quantum Metrology

  • Chapter
  • First Online:
  • 755 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Spin squeezing is a quantum strategy introduced in 1993 by Kitagawa and Ueda [1] which aims to redistribute the fluctuations of two conjugate spin directions among each other. In 1994 it was theoretically shown that spin squeezed states are useful quantum resources to enhance the precision of atom interferometers [2] and in 2001 the connection between spin squeezing and entanglement was pointed out [3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this thesis we deal with large spins such that we often approximate \(\sqrt{\mathcal{J}(\mathcal{J}+1)}\approx{\mathcal {J}}.\)

  2. 2.

    Above we give an example for the mean spin in \(J_{x}\) direction, however for the purpose of better illustration we have chosen a different direction in the figure.

  3. 3.

    The general expression is \({\frac{4\Updelta\hat{J}_k^2}{N}} \geq 1 - {\frac{4\langle\hat{J}_k\rangle^2}{N^2}}\) [19].

  4. 4.

    Since criterion (2.15) can be related to a gain in interferometric precision (see Sect. 2.4), it measures the “usefulness" of spin squeezed states as a quantum resource in a known experimental protocol.

  5. 5.

    As already mentioned a spin \(S=1/2\) can not be squeezed at all.

References

  1. Kitagawa M, Ueda M (1993) Squeezed spin states. Phys Rev A 47:5138–5143

    Article  ADS  Google Scholar 

  2. Wineland D, Bollinger J, Itano W, Heinzen D (1994) Squeezed atomic states and projection noise in spectroscopy. Phys Rev A 50:67–88

    Article  ADS  Google Scholar 

  3. Sørensen AS, Duan L, Cirac J, Zoller P (2001) Many-particle entanglement with Bose–Einstein condensates. Nature 409:63–6

    Article  ADS  Google Scholar 

  4. Metcalf H, Van der Straten P (1999) Laser cooling and trapping. Springer, New York

    Google Scholar 

  5. Sakurai J (1994) Modern quantum mechanics. Addison-Wesley, Reading

    Google Scholar 

  6. Arecchi FT, Courtens E, Gilmore R, Thomas H (1972) Atomic coherent states in quantum optics. Phys Rev A 6:2211–2237

    Article  ADS  Google Scholar 

  7. Radcliffe JM (1971) Some properties of coherent spin states. J Phys A Gen Phys 4:313–323

    Article  MathSciNet  ADS  Google Scholar 

  8. Zhang W-M, Feng DH, Gilmore R (1990) Coherent states: theory and some applications. Rev Mod Phys 62:867–927

    Article  MathSciNet  ADS  Google Scholar 

  9. Giovannetti V, Lloyd S, Maccone L (2004) Quantum-enhanced measurements: beating the standard quantum limit. Science 306:1330–1336

    Article  ADS  Google Scholar 

  10. Lee CT (1984) Q representation of the atomic coherent states and the origin of fluctuations in superfluorescence. Phys Rev A 30:3308–3310

    Article  ADS  Google Scholar 

  11. Amico L, Fazio R, Osterloh A, Vedral V (2008) Entanglement in many-body systems. Rev Mod Phys 80:517

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Horodecki R, Horodecki P, Horodecki M, Horodecki K (2009) Quantum entanglement. Rev Mod Phys 81:865

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Plenio MB, Virmani S (2007) An introduction to entanglement measures. Quantum Inf Comput 7:1

    MathSciNet  MATH  Google Scholar 

  14. Benatti F, Floreanini R, Marzolino U (2010) Sub-shot-noise quantum metrology with entangled identical particles. Ann Phys 325:924

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Tóth G, Knapp C, Gühne O, Briegel HJ (2007) Optimal spin squeezing inequalities detect bound entanglement in spin models. Phys Rev Lett 99:250405

    Article  ADS  Google Scholar 

  16. Tóth G, Knapp C, Gühne O, Briegel HJ (2009) Spin squeezing and entanglement. Phys Rev A 79:042334

    Google Scholar 

  17. Korbicz J et al (2006) Generalized spin-squeezing inequalities in N-qubit systems: theory and experiment. Phys Rev A 74:52319

    Article  MathSciNet  ADS  Google Scholar 

  18. Korbicz JK, Cirac JI, Lewenstein M (2005) Erratum spin squeezing inequalities and entanglement of N qubit states. Phys Rev Lett 95:259901

    Article  ADS  Google Scholar 

  19. Korbicz JK, Cirac JI, Lewenstein M (2005) Spin squeezing inequalities and entanglement of N qubit states. Phys Rev Lett 95:120502

    Article  ADS  Google Scholar 

  20. Wang X, Sanders B (2003) Spin squeezing and pairwise entanglement for symmetric multiqubit states. Phys Rev A 68:12101

    Article  ADS  Google Scholar 

  21. Chaudhury S, Smith A, Anderson BE, Ghose S, Jessen PS (2009) Quantum signatures of chaos in a kicked top. Nature 461:768–771

    Article  ADS  Google Scholar 

  22. Bennett CH, DiVincenzo DP, Smolin JA, Wootters WK (1996) Mixed-state entanglement and quantum error correction. Phys Rev A 54:824–3851

    MathSciNet  Google Scholar 

  23. Cohen-Tannoudji C, Diu B, Laloe F (2005) Quantum mechanics. Wiley-VCH, New York

    Google Scholar 

  24. Ghose S, Stock R, Jessen P, Lal R, Silberfarb A (2001) Chaos, entanglement, and decoherence in the quantum kicked top. Phys Rev A 78:042318

    Article  MathSciNet  ADS  Google Scholar 

  25. Sørensen AS, Mølmer K (1949) Entanglement and extreme spin squeezing. Phys Rev Lett 86:4431–4434

    Article  Google Scholar 

  26. Ramsey NF (1949) A new molecular beam resonance method. Phys Rev 76:996

    Google Scholar 

  27. Ramsey NF (1950) A molecular beam resonance method with separated oscillating fields. Phys Rev 78:695–699

    Article  ADS  Google Scholar 

  28. Santarelli G et al (1999) Quantum projection noise in an atomic fountain: a high stability cesium frequency standard. Phys Rev Lett 82:4619–4622

    Article  ADS  Google Scholar 

  29. Wasilewski W, Jensen K, Krauter H, Renema JJ, Polzik ES (2010) Quantum noise limited and entanglement assisted magnetometry. Phys Rev Lett 104:133601

    Article  ADS  Google Scholar 

  30. Cronin AD, Schmiedmayer J, Pritchard DE (2009) Optics and interferometry with atoms and molecules. Rev Mod Phys 81:1051

    Article  ADS  Google Scholar 

  31. Kasevich M, Chu S (1992) Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Appl Phys B 54:321–332

    Article  ADS  Google Scholar 

  32. Gustavson TL, Bouyer P, Kasevich MA (1997) Precision rotation measurements with an atom interferometer gyroscope. Phys Rev Lett 78:2046–2049

    Article  ADS  Google Scholar 

  33. Pezzé L, Smerzi A (2009) Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys Rev Lett 102:100401

    Article  MathSciNet  ADS  Google Scholar 

  34. Leibfried D et al (2004) Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304:1476–1478

    Article  ADS  Google Scholar 

  35. Roos CF, Chwalla M, Kim K, Riebe M, Blatt R (2006) ‘Designer atoms’ for quantum metrology. Nature 443:316

    Article  ADS  Google Scholar 

  36. Nagata T, Okamoto R, O’Brien JL, Sasaki K, Takeuchi S (2007) Beating the standard quantum limit with four-entangled photons. Science 316:726–729

    Article  ADS  Google Scholar 

  37. Meyer V et al (2001) Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. Phys Rev Lett 86:5870–5873

    Article  ADS  Google Scholar 

  38. Schleier-Smith MH, Leroux ID, Vuletic V (2010) Reduced-quantum-uncertainty states of an ensemble of two-level atoms. Phys Rev Lett 104:73604

    Article  ADS  Google Scholar 

  39. Leroux ID, Schleier-Smith MH, Vuletic V (2010) Implementation of cavity squeezing of a collective atomic spin. Phys Rev Lett 104:73602

    Article  ADS  Google Scholar 

  40. Fernholz T et al (2008) Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement. Phys Rev Lett 101:073601

    Article  ADS  Google Scholar 

  41. Kuzmich A, Mandel L, Bigelow NP (2000) Generation of spin squeezing via continuous quantum nondemolition measurement. Phys Rev Lett 85:1594–1597

    Article  ADS  Google Scholar 

  42. Hald J, Sørensen JL, Schori C, Polzik ES (1999) Spin squeezed atoms: a macroscopic entangled ensemble created by light. Phys Rev Lett 83:1319–1322

    Article  ADS  Google Scholar 

  43. Appel J et al (2009) Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc Natl Acad Sci USA 106:10960–10965

    Article  ADS  Google Scholar 

  44. Goda K et al (2008) A quantum-enhanced prototype gravitational-wave detector. Nat Phys 4:472–476

    Article  Google Scholar 

  45. Vahlbruch H et al (2008) Observation of squeezed light with 10 dB quantum-noise reduction. Phys Rev Lett 100:033602

    Article  ADS  Google Scholar 

  46. Estève J, Gross C, Weller A, Giovanazzi S, Oberthaler M K (2008) Squeezing and entanglement in a Bose–Einstein condensate. Nature 455:1216–1219

    Article  ADS  Google Scholar 

  47. Giovannetti V, Lloyd S, Maccone L (2006) Quantum metrology. Phys Rev Lett 96:010401

    Article  MathSciNet  ADS  Google Scholar 

  48. Lee H, Kok P, Dowling J (2003) A quantum Rosetta stone for interferometry. J Mod Opt 49:2325–2338

    Article  MathSciNet  ADS  Google Scholar 

  49. Bouyer P, Kasevich MA (1997) Heisenberg-limited spectroscopy with degenerate Bose–Einstein gases. Phys Rev A 56:R1083–R1086

    Article  ADS  Google Scholar 

  50. Dowling JP (1998) Correlated input-port, matter-wave interferometer: Quantum-noise limits to the atom-laser gyroscope. Phys Rev A 57:4736–4746

    Article  MathSciNet  ADS  Google Scholar 

  51. Bollinger JJ, Itano WM, Wineland DJ, Heinzen DJ (1996) Optimal frequency measurements with maximally correlated states. Phys Rev A 54:R4649–R4652

    Article  ADS  Google Scholar 

  52. Pezzé L, Collins LA, Smerzi A, Berman GP, Bishop AR (2005) Sub-shotnoise phase sensitivity with a Bose–Einstein condensate Mach–Zehnder interferometer. Phys Rev A 72:043612

    Article  ADS  Google Scholar 

  53. Pezzé L, Smerzi A, Khoury G, Hodelin JF, Bouwmeester D (2007) Phase detection at the quantum limit with multiphoton Mach–Zehnder interferometry. Phys Rev Lett 99:223602

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Groß, C. (2012). Spin Squeezing, Entanglement and Quantum Metrology. In: Spin Squeezing and Non-linear Atom Interferometry with Bose-Einstein Condensates. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25637-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25637-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25636-3

  • Online ISBN: 978-3-642-25637-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics