Skip to main content

Conformal Rigidity

  • Chapter
  • First Online:
Manfredo P. do Carmo – Selected Papers

Abstract

In one of his less known papers, Cartan [3] studies the conformal deformations of hypersurfaces of an Euclidean space \(R^{n+1},n>4.\)As a consequence of his methods, he obtains a (local) sufficient condition for conformal rigidity ([3], pg. 101; see also Corollary 1.3 below). In this paper we obtain a generalization of Cartan’s rigidity theorem for codimension k ≤ 4. This gives a new proof of Cartan’s result that is independent of the methods of [3]. The fact that we have restricted ourselves to codimensions k ≤ 4 seems to be a technical point, and we will return to that in a while. As a simple consequence of our methods, we obtain an improvement, for codimension k ≤ 5, of Allendoerfer’s isometric rigidity theorem [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. B. Allendoerfer, Rigidity for spaces of class greater than one, Amer. J. of Math. 61 (1939), 633-644.

    Article  MathSciNet  Google Scholar 

  2. M. Artin, Geometric Algebra, Interscience Publishers, New York, 1957.

    MATH  Google Scholar 

  3. E. Cartan, Sur les déformations des hypersurfaces dans l’espace conforme de dimension ≥5, Bull. Soc. Math. France, 1917,57-121.

    Google Scholar 

  4. E. Cartan, Sur certaines hypersurfaces de l’espace conforme réel à cinq dimensions, Bull. Soc. Math. France, 46 (1918), 84-105.

    Google Scholar 

  5. M. Dajczer, A characterization of complex hypersurfaces in C m, preprint.

    Google Scholar 

  6. J.D. Moore, Submanifolds of constant positive curvature I, Duke Math. J., 44 (1977), 449-489.

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Nomizu, Uniqueness of the normal connections and congruence of isometric immersions, Tohoku Math. J., 28 (1976), 613-617.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Sacksteder, The rigidity of hypersurfaces, Journal of Math. and Mech. 11 (1962), 929-940.

    MathSciNet  MATH  Google Scholar 

  9. M. Spivak, Comprehensive Differential Geometry, vol. V, Publish or Perish, San Francisco, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carmo, M.d., Dajczer, M. (2012). Conformal Rigidity. In: Tenenblat, K. (eds) Manfredo P. do Carmo – Selected Papers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25588-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25588-5_21

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25587-8

  • Online ISBN: 978-3-642-25588-5

  • eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)

Publish with us

Policies and ethics