Skip to main content

A Proof of a General Isoperimetric Inequality for Surfaces

  • Chapter
  • First Online:
Manfredo P. do Carmo – Selected Papers

Abstract

(1.1) Let M be a two-dimensional C2-manifold endowed with a C2-Riemannian metric. We say that M is a generalized surface if the metric in M is allowed to degenerate at isolated points; such points are called singularities of the metric. In this paper we use the method of Fiala-Bol (cf. [12, 9]) to give a proof of the following general isoperimetric inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandroff, A.D.: lsoperimetric inequalities for curved surfaces. Dokl. Akad. Nauk. SSSR 47,235-238 (1945)

    MathSciNet  MATH  Google Scholar 

  2. Alexandroff, A.D.: Die innere Geometrie der Konvexen Flächen. Berlin: Akademie-Verlag 1955

    Google Scholar 

  3. Alexandroff, A.D., Streltsov, V.V.: Estimates of the length of a curve on a surface [Russian]. Dokl. Akad. Nauk. SSSR 93, 221-224 (1953)

    Google Scholar 

  4. Alexandroff, A.D., Streltsov, V.V.: lsoperimetric problem and estimates of the length of a curve on a surface. Two-dimensional manifolds of bounded curvature. Proc. Steklov lnst. Math. 76, 81–99 (1965)

    Google Scholar 

  5. Alexandroff, A.D., Zalgaller, V.A.: Intrinsic Geometry of Surfaces. Translations of Mathematical Monographs 15. Providence, R.I.: Amer. Math. Soc. 1967

    Google Scholar 

  6. Bandle, C.: On a differential inequality and its applications to geometry. Math. Z. 147, 253–261 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beckenbach, E.F., Radó, T.: Subharmonic functions and surfaces of negative curvature. Trans. Amer. Math. Soc. 35, 662–674 (1933)

    Google Scholar 

  8. Bernstein, F.: ÜOber die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in der Ebene. Math. Ann. 60, 117–136 (1905)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bol, G.: Isoperimetrische Ungleichung für Bereiche auf Flächen. Jber. Deutsch. Math.-Verein. 51, 219-257 (1941)

    MathSciNet  Google Scholar 

  10. Burago, Yu.D.: Note on the isoperimetric inequality on two-dimensional surfaces. Siberian Math. J. 14, 666–668 (1973)

    MathSciNet  MATH  Google Scholar 

  11. Carleman, T.: Zur Theorie der Minimal-Flachen. Math. Z. 9, 154–160 (1921)

    MathSciNet  Google Scholar 

  12. Fiala, F.: Le problème des isoperimètres sur les surfaces ouverts à courbure positive. Comment. Math. Helv. 13, 293–396 (1940-41)

    Google Scholar 

  13. Gromov, M.L., Rokhlin, V.A.: Embeddings and immersions in Riemannian Geometry. Russian Math. Surveys 25, 5, 1–57 (1970)

    Article  MATH  Google Scholar 

  14. Huber, A.: On the isoperimetric inequality on surfaces of variable Gaussian curvature. Ann. of Math 60, 237–247 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huber, A.: Zum potentialtheoretischen Aspekt der Alexandrowschen Flachentheorie. Comment. Math. Helv. 34, 99–126 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  16. lonin, V.K.: On isoperimetric and various other inequalities for a manifold of bounded curvature. Siberian Math. J. 10, 329-342 (1969)

    Google Scholar 

  17. Osserman, R.: Bonessen-style isoperimetric inequalities. Preprint

    Google Scholar 

  18. Reschetniak, !.G.: Isothermal coordinates in manifolds of bounded curvature. Dokl. Akad. Nauk. SSSR 94, 631–633 (1954)

    Google Scholar 

  19. Schmidt, E.: Beweis der Isoperimetrischen Eigenschaft der Kugel im Hyperbo1ischen und Spharischen Raum jeder Dimensionenzahl. Math. Z. 46, 204-230 (1940)

    Article  MathSciNet  Google Scholar 

  20. Toponogov, V.A.: An isoperimetric inequality for surfaces whose Gaussian curvature is bounded above. Siberian Math. J. 10, 144-157 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  21. Whitney, H.: Differentiable manifolds. Ann. of Math. 37, 645–680 (1936)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barbosa, J.L., Carmo, M.d. (2012). A Proof of a General Isoperimetric Inequality for Surfaces. In: Tenenblat, K. (eds) Manfredo P. do Carmo – Selected Papers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25588-5_13

Download citation

Publish with us

Policies and ethics