Skip to main content

Basis of Magnetism

  • Chapter
  • First Online:
  • 4756 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 158))

Abstract

This chapter reviews mostly the basic macroscopic magnetism. It contains the sections of Basic magnetic laws and magnetic quantities; Magnetic Coulomb’s law, static magnetic field, and magnetic circuit; Zeeman energy, magnetization energy, and magnetostatic energy; Thermodynamics for magnetic media; and Hamiltonian of an electric charged particle in static electric and magnetic fields; and Appendices 1 to 3.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stern-Gerlach experiment, Wikipedia

    Google Scholar 

  2. D. Cohen, Measurements of the magnetic fields produced by the human heart, brain, and lungs. IEEE Trans. Magn. 11, 694 (1975)

    Article  ADS  Google Scholar 

  3. E. Kneller, Ferromagnetism (Springer-Verlag, Berlin, 1962)

    Google Scholar 

  4. R.H. Xue, H.Q. Hu, Q. Lu, in Digest of 6 th National Conference on Magnetism (Chinese), (Wuhan, China 1987), p. 598

    Google Scholar 

  5. V.K. Pecharsky, K.A. Gschneider, Jr., Phys. Rev. Lett. 78, 4494 (1997)

    Google Scholar 

  6. Bohr-van Leeuwen theorem, Wikipedia

    Google Scholar 

  7. Wikipedia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanmin Jin .

Appendices

Appendix 1: Physical constants

Table a1.1 Physical constants [7]

Appendix 2: Units and Their Conversions

Table a2.1 Formulae
Table a2.2 Units and Their Conversions

Appendix 3: Selections From Vector Analysis

Vector Algebra  

$$\begin{aligned} \vec {a}{\cdot } \vec {b}=\sum _\alpha ^{x,y,z} {a_\alpha b_\alpha }. \end{aligned}$$
(a3.1)
$$\begin{aligned}&\vec {a}\times \vec {b}=\left| {{\begin{array}{lll} {\vec {e}_x }&{\vec {e}_y }&{\vec {e}_z } \\ {a_x }&{a_y }&{a_z } \\ {b_x }&{b_y }&{b_z } \\ \end{array} }} \right|=\left(a_y b_z -a_z b_y \right)\vec {e}_x +\left(a_z b_x -a_x b_z \right)\vec {e}_y +\left(a_x b_y -a_y b_x \right)\vec {e}_z.\nonumber \\&\left(\vec {e}_\alpha : \text{ unit} \text{ vector} \text{ in} \text{ the}\;{\alpha }\;\mathrm{ direction}\right) \end{aligned}$$
(a3.2)
$$\begin{aligned} \vec {a}{\cdot } \bigl (\vec {b}\times \vec {c} \bigr )=\vec {b}{\cdot } \bigl (\vec {c}\times \vec {a}\bigr )=\vec {c}{\cdot } \bigl (\vec {a}\times \vec {b}\bigr )=\left| {{\begin{array}{lll} {a_x }&{a_y }&{a_z } \\ {b_x }&{b_y }&{b_z } \\ {c_x }&{c_y }&{c_z } \\ \end{array} }} \right|. \end{aligned}$$
(a3.3)
$$\begin{aligned} \vec {a}\times \bigl (\vec {b}\times \vec {c}\bigr )=\vec {b} \bigl (\vec {a}{\cdot }\vec {c} \bigr )-\vec {c}\bigl (\vec {a}{\cdot } \vec {b}\bigr ). \end{aligned}$$
(a3.4)

Del, Gradient, Divergence, and Curl Operators  

$$\begin{aligned} \nabla \equiv \sum _\alpha ^{x,y,z} \vec {e}_\alpha \frac{\partial }{\partial \alpha }. \qquad (\text{ Del} \text{ or} \text{ Nabla} \text{ operator}) \end{aligned}$$
(a3.5)
$$\begin{aligned} \nabla {\cdot } \nabla =\nabla ^{2}=\sum _\alpha ^{x,y,z} {\frac{\partial ^{2}}{\partial \alpha ^{2}}} . \qquad (\text{ Laplace} \text{ operator}) \end{aligned}$$
(a3.6)
$$\begin{aligned} \nabla \varphi \equiv (\frac{d\varphi }{d\vec {l}})_{\max } =\sum _\alpha ^{x,y,z} {\frac{\partial \varphi }{\partial \alpha }\vec {e}_\alpha } . \qquad (\text{ gradient} \text{ of}\;{\varphi }) \end{aligned}$$
(a3.7)
$$\begin{aligned} \nabla {\cdot } \vec {a}\equiv \lim _{v\rightarrow 0} \frac{\oint {\vec {a}{\cdot } d\vec {S}} }{v}=\sum _\alpha ^{x,y,z}{\frac{\partial a_\alpha }{\partial \alpha }} . \qquad (\text{ divergence} \text{ of}\;{\vec {a}}, v: \\ \text{ volume} \text{ surrounded} \text{ by} \text{ the} \text{ closed} \text{ surface} \text{ S}) \end{aligned}$$
(a3.8)
$$\begin{aligned} \nabla \times \vec {a}\equiv \lim _{S\rightarrow 0} \left(\frac{\oint {\vec {a}{\cdot } \mathrm{ d}\vec {l}} }{\vec {S}}\right)_{\max } =\left| {{\begin{array}{lll} {\vec {e}_x }&{\vec {e}_y }&{\vec {e}_z } \\ {\frac{\partial }{\partial x}}&{\frac{\partial }{\partial y}}&{\frac{\partial }{\partial z}} \\ {a_x }&{a_y }&{a_z } \\ \end{array} }} \right|. \qquad (\text{ curl} \text{ of}\;\vec {a}, S{:}\ \text{ area} \text{ of} \text{ the} \text{ closed} \text{ curve}\;l) \end{aligned}$$
(a3.9)
$$\begin{aligned} \nabla \times \nabla \varphi =0. \end{aligned}$$
(a3.10)
$$\begin{aligned} \nabla {\cdot } \nabla \times \vec {a}=0. \end{aligned}$$
(a3.11)
$$\begin{aligned} \nabla \times \nabla \times \vec {a}=\left(\nabla \nabla {\cdot } -\nabla ^{2}\right)\vec {a}. \end{aligned}$$
(a3.12)

If \(\nabla \times \vec {a}=0\) in region D, \(\vec {a}\) is a divergence of a scalar:

$$\begin{aligned} \vec {a}=\nabla \varphi . \end{aligned}$$
(a3.13)

If \(\nabla {\cdot } \vec {a}=0\) in region D, \(\vec {a}\) is a curl of a vector:

$$\begin{aligned} \vec {a}=\nabla \times \vec {A}. \end{aligned}$$
(a3.14)

Del Operations on Products of Two Functions  

$$\begin{aligned} \nabla \bigl (\vec {a}{\cdot } \vec {b}\bigr )=\vec {a}\times \bigl (\nabla \times \vec {b} \bigr )+\vec {b}\times \bigl (\nabla \times \vec {a} \bigr )+\bigl (\vec {a}{\cdot } \nabla \bigr )\vec {b}+\bigl (\vec {b}{\cdot } \nabla \bigr )\vec {a}. \end{aligned}$$
(a3.15)
$$\begin{aligned} \nabla {\cdot } \bigl (\varphi \vec {a}\bigr )=\bigl (\nabla \varphi \bigr ){\cdot } \vec {a}+\varphi \nabla {\cdot } \vec {a}. \end{aligned}$$
(a3.16)
$$\begin{aligned} \nabla {\cdot } \bigl (\vec {a}\times \vec {b}\bigr )=\bigl (\nabla \times \vec {a}\bigr ){\cdot } \vec {b}-\vec {a}{\cdot } \bigl (\nabla \times \vec {b}\bigr ). \end{aligned}$$
(a3.17)
$$\begin{aligned} \nabla \times \bigl (\varphi \vec {a}\bigr )=\bigl (\nabla \varphi \bigr )\times \vec {a}+\varphi \nabla \times \vec {a}. \end{aligned}$$
(a3.18)
$$\begin{aligned} \nabla \times \bigl (\vec {a}\times \vec {b}\bigr )=\bigl (\vec {b}{\cdot } \nabla \bigr )\vec {a}-\bigl (\vec {a}{\cdot } \nabla \bigr )\vec {b}+\bigl (\nabla {\cdot } \vec {b}\bigr )\vec {a}-\bigl (\nabla {\cdot } \vec {a}\bigr )\vec {b}. \end{aligned}$$
(a3.19)

Del Operations in Spherical Coordinate System  

$$\begin{aligned} \nabla \varphi =\frac{\partial \varphi }{\partial r}\vec {e}_r +\frac{1}{r}\frac{\partial \varphi }{\partial \theta }\vec {e}_\theta +\frac{1}{r\sin \theta }\frac{\partial \varphi }{\partial \phi }\vec {e}_\phi . \end{aligned}$$
(a3.20)
$$\begin{aligned} \nabla {\cdot } \vec {a}=\frac{1}{r^{2}}\frac{\partial \bigl (a_r r^{2}\bigr )}{\partial r}+\frac{1}{r\sin \theta }\frac{\partial (a_\theta \sin \theta )}{\partial \theta }+\frac{1}{r\sin \theta }\frac{\partial a_\phi }{\partial \phi }. \end{aligned}$$
(a3.21)
$$\begin{aligned} \nabla \times \vec {a}&=\frac{1}{r\sin \theta }\left[\frac{\partial \bigl (a_\phi \sin \theta \bigr )}{\partial \theta }-\frac{\partial a_\theta }{\partial \phi }\right]\vec {e}_r +\frac{1}{r}\left[\frac{1}{\sin \theta }\frac{\partial a_r }{\partial \phi }-\frac{\partial (a_\phi r)}{\partial r}\right]\vec {e}_\theta \nonumber \\&\quad +\frac{1}{r}\left[\frac{\partial (a_\theta r)}{\partial r}-\frac{\partial a_r }{\partial \theta }\right]\vec {e}_\phi . \end{aligned}$$
(a3.22)
$$\begin{aligned} \nabla ^{2}\varphi =\frac{1}{r^{2}}\frac{\partial }{\partial r}\bigl (r^{2}\frac{\partial \varphi }{\partial r}\bigr )+\frac{1}{r^{2}\sin \theta }\frac{\partial }{\partial \theta } \bigl (\sin \theta \frac{\partial \varphi }{\partial \theta } \bigr )+\frac{1}{\left(r\sin \theta \right)^{2}}\frac{\partial ^{2}\varphi }{\partial \phi ^{2}}. \end{aligned}$$
(a3.23)

Integral Relations  

$$\begin{aligned} \int {\mathrm{ d}\vec {S}\times \nabla \varphi } =\oint {\varphi \mathrm{ d}\vec {l}} . \end{aligned}$$
(a3.24)
$$\begin{aligned} \int {\nabla {\cdot } \vec {a}\mathrm{ d}v} =\oint {\vec {a}{\cdot } \mathrm{ d}\vec {S}} . \end{aligned}$$
(a3.25)
$$\begin{aligned} \int {\nabla \times \vec {a}\mathrm{ d}v=\oint {\mathrm{ d}\vec {S}\times \vec {a}} } . \end{aligned}$$
(a3.26)
$$\begin{aligned} \int {\bigl (\nabla \times \vec {a}\bigr ){\cdot } \mathrm{ d}\vec {S}=\oint {\vec {a}{\cdot } \mathrm{ d}\vec {l}} } . \end{aligned}$$
(a3.27)
$$\begin{aligned} \int {\left[\psi \nabla ^{2}\varphi +(\nabla \psi ){\cdot } (\nabla \varphi )\right]\mathrm{ d}v=\oint {\psi (\nabla \varphi ){\cdot } \mathrm{ d}\vec {S}} }. \end{aligned}$$
(a3.28)
$$\begin{aligned} \int {\left(\psi \nabla ^{2}\varphi -\varphi \nabla ^{2}\psi \right)} \mathrm{ d}v=\oint {\left(\psi \nabla \varphi -\varphi \nabla \psi \right){\cdot } \mathrm{ d}\vec {S}} . \end{aligned}$$
(a3.29)

 

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jin, H., Miyazaki, T. (2012). Basis of Magnetism. In: The Physics of Ferromagnetism. Springer Series in Materials Science, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25583-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25583-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25582-3

  • Online ISBN: 978-3-642-25583-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics