Skip to main content

Biomolecular Machines

  • Chapter
  • First Online:
  • 1202 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This chapter presents several devices, such as actuators and switches, based on conformational changes in biomolecules, as well as biomolecular walkers and motors, which change their spatial position and can also carry cargoes from one point to another.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal A, Katira P, Hess H (2009) Millisecond curing time of a molecular adhesive causes velocity-dependent cargo-loading of molecular shuttles. Nano Lett 9:1170–1175

    Article  ADS  Google Scholar 

  • Bachand GD, Rivera SB, Boal AK, Gaudioso J, Liu J, Bunker BC (2004) Assembly and transport of nanocrystal CdSe quantum dot nanocomposites using microtubules and kinesin motor proteins. Nano Lett 4:817–821

    Article  ADS  Google Scholar 

  • Bath J, Green SJ, Allen KE, Turberfield AJ (2009) Mechanism for a directional, processive, and reversible DNA motor. Small 5:1513–1516

    Article  Google Scholar 

  • Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54

    Article  Google Scholar 

  • Brown TB, Hancock WO (2002) A polarized microtubule array for kinesin-powered nanoscale assembly and force generation. Nano Lett 2:1131–1135

    Article  ADS  Google Scholar 

  • Byun K-E, Heo K, Shim S, Choi H-J, Hong S (2009) Functionalization of silicon nanowires with actomyosin motor protein for bioinspired nanomechanical applications. Small 5:2659–2664

    Article  Google Scholar 

  • Capaldi RA, Aggeler R (2002) Mechanism of the \(\mathrm{{F}_{1}{F}_{0}}\)-type ATP synthase, a biological rotary motor. Trends Biochem Sci 27:154–160

    Article  Google Scholar 

  • Chen Y, Wang M, Mao C (2004) An autonomous DNA nanomotor powered by a DNA enzyme. Angew Chem Int Ed Engl 43:3554–3557

    Article  Google Scholar 

  • Chhabra R, Sharma J, Liu Y, Yan H (2006) Addressable molecular tweezers for DNA-templated coupling reactions. Nano Lett 6:978–983.

    Article  ADS  Google Scholar 

  • Ciudad A, Lacast AM, Sanch JM (2005) Physical analysis of a processive molecular motor: the conventional kinesin. Phys Rev E 72:031918

    Article  ADS  Google Scholar 

  • Dinu CZ, Opitz J, Pompe W, Howard J, Mertig M, Diez S (2006) Parallel manipulation of bifunctional DNA molecules on structured surfaces using kinesin-driven microtubules. Small 2:1090–1098

    Article  Google Scholar 

  • Dittmer WU, Kempter S, Rädler JO, Simmel FC (2005) Using gene regulation to program DNA-based molecular devices. Small 1:709–712

    Article  Google Scholar 

  • Dragoman M, Dragoman D (2009) Nanoelectronics. Principles and devices, 2nd edn. Artech House, Boston, Chapter 7

    Google Scholar 

  • Fahlman RP, Sen D (2002) DNA conformational switches as sensitive electronic sensors of analytes. J Am Chem Soc 124:4610–4616

    Article  Google Scholar 

  • Hendricks AG, Epureanu BI, Meyhöfer E (2009) Collective dynamics of kinesin. Phys Rev E 79:031929

    Article  MathSciNet  ADS  Google Scholar 

  • Hess H et al (2003) Molecular shuttles operating undercover: a new photolithographic approach for the fabrication of structured surfaces supporting directed motility. Nano Lett 3:1651–1655

    Article  ADS  Google Scholar 

  • Hiyama S, Gojo R, Shima T, Takeuchi S, Sutoh K (2009) Biomolecular-motor-based nano- or microscale particle translocations on DNA microarrays. Nano Lett 9:2407–2413

    Article  ADS  Google Scholar 

  • Ionov L, Stamm M, Diez S (2006) Reversible switching of microtubule motility using thermoresponsive polymer surfaces. Nano Lett 6:1982–1987

    Article  ADS  Google Scholar 

  • Kay ER, Leigh DA, Zerbetto F (2007) Synthetic molecular motors and mechanical machines. Angew Chem Int Ed Engl 46:72–191

    Article  Google Scholar 

  • Kang H et al (2009) Single-DNA molecule nanomotor regulated by photons. Nano Lett 9:2690–2696

    Article  ADS  Google Scholar 

  • Lacoste D, Lau AWC, Mallick K (2008) Fluctuation theorem and large deviation function for a solvable model of a molecular motor. Phys Rev E 78:011915

    Article  ADS  Google Scholar 

  • Liedl T, Simmel FC (2005) Switching the conformation of a DNA molecule with a chemical oscillator. Nano Lett 5:1894–1898

    Article  ADS  Google Scholar 

  • Liepelt S, Lipowsky R (2009) Operation modes of the molecular motor kinesin. Phys Rev E 79:011917

    Article  ADS  Google Scholar 

  • Lin C-T, Kao M-T, Kurabayashi K, Meyhöfer E (2006) Efficient designs for powering microscale devices with nanoscale biomolecular motors. Small 2:281–287

    Article  MATH  Google Scholar 

  • Lin C-T, Kao M-T, Kurabayashi K, Meyhofer E (2008) Self-contained, biomolecular motor-driven protein sorting and concentrating in an ultrasensitive microfluidic chip. Nano Lett 8:1041–1046

    Article  ADS  Google Scholar 

  • Liu H, Liu D (2009) DNA nanomachines and their functional evolution. Chem Commun 2625–2636

    Google Scholar 

  • Liu D, Bruckbauer A, Abell C, Balasubramian S, Kang D-J, Klenerman D, Zhou D (2006) A reversible pH-driven DNA nanoswitch array. J Am Chem Soc 128:2067–2071

    Article  Google Scholar 

  • Ouldridge TE, Louis AA, Doye JPK (2010) DNA nanotweezers studied with a coarse-grained model of DNA. Phys Rev Lett 104:178101

    Article  ADS  Google Scholar 

  • Sahu S, LaBean TH, Reif JH (2008) A DNA nanotransport device powered by polymerase ϕ29. Nano Lett 8:3870–3878

    Article  ADS  Google Scholar 

  • Schliwa M, Woehlke G (2003) Molecular motors. Nature 422:759–765

    Article  ADS  Google Scholar 

  • Sherman WB, Seeman NC (2004) A precisely controlled DNA biped walking device. Nano Lett 4:1203–1207

    Article  ADS  Google Scholar 

  • Shin J-S, Pierce NA (2004) A synthetic DNA walker for molecular transport. J Am Chem Soc 126:10834–10835

    Article  Google Scholar 

  • Shin SR et al (2009) Fullerene attachment enhances performance of a DNA nanomachine. Adv Mater 21:1907–1910

    Article  Google Scholar 

  • Shu W et al (2005) DNA molecular motor driven micromechanical cantilever arrays. J Am Chem Soc 127:17054–17060

    Article  Google Scholar 

  • Simmel FC, Dittmer WU (2005) DNA nanodevices. Small 1:284–299

    Article  Google Scholar 

  • Simmel FC, Yurke B (2001) Using DNA to construct and power a nanoactuator. Phys Rev E 63:041913

    Article  ADS  Google Scholar 

  • Simmel FC, Yurke B (2002) A DNA-based molecular device switchable between three distinct mechanical state. Appl Phys Lett 80:883–885

    Article  ADS  Google Scholar 

  • Smirnov AYu, Savel’ev S, Mourokh LG, Nori F (2008) Proton transport and torque generation in rotary biomotors. Phys Rev E 78:031921

    Article  ADS  Google Scholar 

  • Tashiro R, Sugiyama H (2005) Biomolecule-based switching devices that respond inversely to thermal stimuli. J Am Chem Soc 127:2094–2097

    Article  Google Scholar 

  • Venkataraman S, Dirks RM, Rothemund PWK, Winfree E, Pierce NA (2007) An autonomous polymerization motor powered by DNA hybridization. Nat Nanotechnol 2:490–494

    Article  Google Scholar 

  • Weizmann Y, Beissenhirtz MK, Cheglakov Z, Nowarski R, Kotler M, Willner I (2006) A virus spotlighted by an autonomous DNA machine. Angew Chem Int Ed Engl 45:7384–7388

    Article  Google Scholar 

  • Yildiz A, Selvin PR (2005) Kinesin: walking, crawling or sliding along? Trends Cell Biol 15: 112–120

    Article  Google Scholar 

  • Yin P, Yan H, Daniell XG, Turberfield AJ, Reif JH (2004) A unidirectional DNA walker that moves autonomously along a track. Angew Chem Int Ed Engl 43:4906–4911

    Article  Google Scholar 

  • Yurke B, Turberfield AJ, Mills, Jr AP, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608

    Article  ADS  Google Scholar 

  • Zhong H, Seeman NC (2006) RNA used to control a DNA rotary nanomachine. Nano Lett 6: 2899–2903

    Article  ADS  Google Scholar 

  • Zhou M, Liang X, Mochizuki T, Asanuma H (2010) A light-driven DNA nanomachine for the efficient photoswitching of RNA digestion. Angew Chem Int Ed Engl 122:2213–2216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dragoman, D., Dragoman, M. (2012). Biomolecular Machines. In: Bionanoelectronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25572-4_6

Download citation

Publish with us

Policies and ethics