Skip to main content

Nanomedicine

  • Chapter
  • First Online:
Bionanoelectronics

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This chapter is dedicated to the applications of nanoelectronics in medicine. In fact, almost the entire book was written with this aim. However, here we will focus only on some issues specific to nanomedicine and directly related to nanoelectronics, i.e., controlled drug delivery and biochips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainslie KM, Desai TA (2008) Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensors. Lab on a Chip 8:1864–1878

    Article  Google Scholar 

  • Bagalkot V, Zhang L, Nissenbaum EL, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot aptamer conjugates for synchronous cancer imaging, therapy and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070

    Article  ADS  Google Scholar 

  • Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Adv Optics Photonics 1:438–483

    Article  Google Scholar 

  • Biondi M, Ungaro F, Quaglia F, Netti PA (2008) Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 60:229–242

    Article  Google Scholar 

  • Boisseau P, Houdy P, Lahmani M (eds) (2010) Nanoscience. nanobiotechnology and nanobiology. Springer, Berlin

    Google Scholar 

  • Burke P, Rutherglen C (2010) Towards a single-chip, implantable RFID system: is a single-cell radio possible? Biomed Microdevices 12:589–596

    Article  Google Scholar 

  • Charvet G, Rousseau L, Billoint O, Gharbi S, Rostaing J-P, Joucla S, Trevisiol M, Bourgerette A, Chauvet P, Moulin C, Goy F, Mercier B, Colin M, Spirkovitch S, Fanet H, Meyrand P, Guillemaud R, Yvert B (2010) BioMEA\(^{\mathrm{TM}}\): a versatile high-density 3D microelectrode array system using integrated electronics. Biosensors Bioelectronics 25:1889–1896

    Article  Google Scholar 

  • Chen X (ed) (2011) Nanoplatform-based molecular imaging, Wiley, New York

    Google Scholar 

  • Dragoman D, Dragoman M (2008) Tunneling nanotube radio. J Appl Phys 104:074314

    Google Scholar 

  • Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13–22

    Article  ADS  Google Scholar 

  • Gannon CJ, Cherukuri P, Yacobson BI, Cognet L, Kanzius JS, Kittrell C, Weisman RB, Pasquali M, Schmidt HK, Smalley RE, Curley SA (2007) Carbon-nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110:2654–2665

    Article  Google Scholar 

  • Grayson ACR, Choi LS, Tyler BM, Wang PP, Brem H, Cima MJ, Langer R (2003) Multi-phase drug delivery from resorbable polymeric microchip device. Nat Mater 2:767–772

    Article  ADS  Google Scholar 

  • Grayson WL, Fröhlich M, Yeager K, Bhumiratana S, Ete Chan M, Cannizzaro C, Wan LQ, Liu XS, Guo XE, Vunjak-Novakovic G (2010) Engineering anatomically shaped human bone grafts. Proc Natl Acad Sci 107:3299–3304

    Article  ADS  Google Scholar 

  • Gui L, Muto A, Chen SA, Breuer CK, Niklason LE (2009) Development of decellularized human umbilical as small diameter vascular grafts. Tissue Eng A15:2665–2676

    Google Scholar 

  • Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110

    Article  Google Scholar 

  • Hamad-Schifferli K, Schwartz JJ, Santos AT, Zhang S, Jacobson JM (2002) Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415:152–155

    Article  ADS  Google Scholar 

  • Han J-H, Paulus GLC, Maruyama R, Heller DA, Kim W-J, Barone PW, Lee CY, Choi JH, Ham M-H, Song C, Fantini C, Strano MS (2010) Exciton antennas and concentrators from core-shell and corrugated carbon nanotube filaments of homogeneous compositions. Nat Mater 9:833–839

    Article  ADS  Google Scholar 

  • Hilt JZ, Peppas NA (2005) Microfabricated drug delivery devices. Int J Pharm 306:15–23

    Article  Google Scholar 

  • Hollenberg BA, Richards CD, Richards R, Bahr DF, Rector DM (2007) A MEMS fabricated flexible electrode array for recording surface field potentials. J Neurosci Methods 153:147–153

    Article  Google Scholar 

  • Huh D, Mathews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstitution organ-level lung functions on chip. Science 328:1662–1668

    Article  ADS  Google Scholar 

  • Jain KK (2008) The handbook of nanomedicine, Springer, Heidelberg

    Google Scholar 

  • Jensen K, Weldon J, Garcia H, Zettl A (2007) Nanotube radio. Nano Lett 7:3508–3511

    Article  ADS  Google Scholar 

  • Ji S-R, Liu C, Zhang B, Yang F, Xu J, Long J, Jin C, Fu D-L, Ni Q-X, Yu X-J (2010) Carbon nanotubes in cancer diagnosis and therapy. Biochim Biophys Acta 1806:29–35

    Google Scholar 

  • Jia J, Guan W, Sim M, Li Y, Li H (2008) Carbon nanotubes based glucose needle-type biosensor. Sensors 8:1712–1718

    Article  Google Scholar 

  • Li Y, Swango RS, Tyler B, Henderson PT, Vogel JS, Rosenberg A, Storm PB, Langer R, Brem H, Cima MJ (2004) In vivo release from a drug delivery MEMS device. J Controlled Release 100:211–219

    Article  Google Scholar 

  • Mernier G, De Keersmaecker K, Bartic C, Borghs G (2007) On-chip controlled release of neurotransmitter molecules. Microelectronic Eng 84:1714–1718

    Article  Google Scholar 

  • Moglia, Menciassi A, Schurr MO, Dario P (2007) Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems. Biomed Microdevices 9:235–243

    Article  Google Scholar 

  • Najafi K, Wise K (1986) An implantable multi-electrode array with on-chip signal processing. IEEE Solid-State Circuits 21:1035–1044

    Article  Google Scholar 

  • Nastruzzi C, Luca G, Basta G, Calafiore R (2005) Bio-artificial organs. Focus Biotechnol 88:17–37

    Article  Google Scholar 

  • Ott HC, Matthisen TS, Goh S-K, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221

    Article  Google Scholar 

  • Parashar A, Pandey S (2011) Plant-in-chip: microfluidic system for studying root growth and pathogenic interactions in Arabidopsis. Appl Phys Lett 98:263703

    Google Scholar 

  • Park S, Kim Y-S, Kim WB, Jon S (2009) Carbon nanosyringe array as a platform for intracellular delivery. Nano Lett 9:1325–1329

    Article  ADS  Google Scholar 

  • Pasquarelli A (2008) Biochips: technologies and applications, Mater Sci Eng C28:495–508

    Google Scholar 

  • Petersen TH, Callle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, E. Herzog, L. Niklasson (2009) Tissue-engineered lungs for in vivo replantation. Science 329:538–541

    Article  ADS  Google Scholar 

  • Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56:581–587

    Article  Google Scholar 

  • Prescott JH, Lipka S, Baldwin S, Sheppard Jr. NF, Maloney JM, Coppeta J, Yomtov B, Staples MA, Santini Jr. JT (2006) Chronic, programmed polypeptide delivery from an implant multireservoir microchip device. Nat Biotechnol 24:437–438

    Article  Google Scholar 

  • Raphael AP, Prow TW, Crichton ML, Chen X, Fernando GJP, Kendall MAF (2010) Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays. Small 6:1785–1793

    Article  Google Scholar 

  • Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine-challenge and perspectives. Angew Chem Int Ed 48:872–897

    Article  Google Scholar 

  • Santini Jr. JT, Cima MJ, Langer R (1999) A controlled-release microchip. Nature 397:335–338

    Article  ADS  Google Scholar 

  • Schetky LMcD, Jadine P, Moussy F (2003) A closed loop implantable artificial pancreas using thin film nitinol MEMS pumps, Proc. Int. Conf. on Shape Memory and Superelastic Technologies, 1–8, Pacific Groove, California

    Google Scholar 

  • Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10:3223–3230

    Article  ADS  Google Scholar 

  • Smith S, Tang TB, Terry JG, Stevenson JTM, Flyn BW, et al. (2007) Development of a miniaturized drug delivery system with wireless power transfer and communications. IET Nanobiotechnol 1:80–86

    Article  Google Scholar 

  • Staples M, Daniel K, Cima MJ, Langer R (2006) Applications of micro- and nano- electromechanical devices to drug delivery. Pharmaceut Res 23:847–863

    Article  Google Scholar 

  • Staples M (2010) Microchips and controlled-release drug reservoirs, Wiley Interdisciplinary Reviews (WIRE). Nanomed Nanobiotechnol 2:400–417

    Article  Google Scholar 

  • Takahata K, Gianchandani Y, Wise KD (2006) Micromachined antenna stents and cuffs for intraluminal pressure and flow. IEEE Micromach Syst 15:1289–1298

    Article  Google Scholar 

  • Tang TB, Smith S, Flyn BW, Stevenson JTM, Gundlach AM, et al (2008) Implementation of wireless power transfer and communications for an implantable ocular drug delivery. IET Nanobiotechnol 2:72–79

    Article  Google Scholar 

  • Tsai N-C, Sue C-Y (2007) Review of MEMS-based drug delivery and dosing systems. Sensor Actuator A 134:555–564

    Article  Google Scholar 

  • Uygun BE et al (2010) Organ reengineering through the development of a transplated recellularized liver graft using decellularized liver matrix. Nat Med 16:814–820

    Article  Google Scholar 

  • Ziaie B, Baldi A, Lei M, Gu Y, Siegel RA (2004) Hard and soft micromachining for bioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 56:145–172

    Article  Google Scholar 

  • Zengerle R, Ulrich J, Kluge S, Richter M, Richter A (1995) A bidirectional Si pump. Sensor Actuator 50:81–86

    Article  Google Scholar 

  • Yun KS, Cho IJ, Bu JU, Kim CJ, Yoon E (2002) A surface-tension driven micropump for low voltage and low power operation. J MEMS 11:454–461

    Google Scholar 

  • Wang Y, Gao S, Ye W-H, Yoon HS, Yang Y-Y (2006) Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater 5:791–796

    Article  ADS  Google Scholar 

  • Wang W, Soper SA (2007) Bio-MEMS. Technologies and applications. CRC Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dragoman, D., Dragoman, M. (2012). Nanomedicine. In: Bionanoelectronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25572-4_4

Download citation

Publish with us

Policies and ethics