Skip to main content

Imaging and Manipulation of Biomolecules

  • Chapter
  • First Online:
Bionanoelectronics

Part of the book series: NanoScience and Technology ((NANO))

  • 1173 Accesses

Abstract

In this chapter, we present the main methods able to image and manipulate biomolecules, with the purpose of getting more information about their behavior. The main characterization tools related to nanotechnologies, such as the atomic force microscope and the scanning tunneling microscopy, will be presented in relation to biomolecule imaging and manipulation. Other applications will be presented as well. The imaging of biomolecules and other biological entities is dominated by optical microscopy, fluorescence microscopy, confocal microscopy, and labeling with organic fluorophores, which are nanoparticles that emit light for in vivo analysis or in vitro detection. However, this subject is beyond the aims of this book. The reader interested in these subjects is advised to read the excellent review of Roncali et al. (2010). This chapter deals mainly with imaging methods directly linked to nanotechnologies

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamcik J, Jung J-M, Flakowski J, de los Rios P, Dietler G, Mezzenga R (2010) Understanding amyloid aggregation by statistical analysis of atomic force microscope. Nat Nanotechnol 5:423–427

    Google Scholar 

  • Bhushan B (ed) (2004) Springer handbook of nanotechnology. Springer, Berlin, pp 330–331

    Google Scholar 

  • Bockelmann U, Thomen Ph, Essevaz-Roulet B, Viasnoff V, Heslot F (2002) Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys J 82:1537–1553

    Article  Google Scholar 

  • Carmon G, Feingold M (2011) Rotation of single bacterial cells relative to the optical axis using optical tweezers. Opt Lett 36:40–42

    Article  ADS  Google Scholar 

  • Chéry CC, Moens L, Cornelis R, Vanhaecke F (2006) Capabilities and limitations of gel electrophoresis for elemental speciation: a laboratory’s experience. Pure Appl Chem 78:91–103

    Article  Google Scholar 

  • Chou C-F, Tegenfeldt JO, Bakajin O, Chan SS, Cox EC, Darnton N, Duke T, Austin RH (2002) Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys J 83:2170–2179

    Article  Google Scholar 

  • Dragoman D, Dragoman M (2009) Real-time detection of deoxyribonucleic acid bases via their negative differential conductance signatures. Phys Rev E 80:022901

    Article  ADS  Google Scholar 

  • Frederix PLTM, Bosshart PD, Engel A (2009) Atomic force microscopy of biological membranes. Biophys J 96:329–338

    Article  Google Scholar 

  • Hansma PK, Tersoff J (1987) Scanning tunneling microscope. J Appl Phys 61:R1–R23

    Article  ADS  Google Scholar 

  • Hawes C, Osterrieder A, Sparkes IA, Ketelaar T (2010) Optical tweezers for the micromanipulation of plant cytoplasm and organelles. Curr Opin Plant Biol 13:731–735

    Article  Google Scholar 

  • He J, Lin L, Zhang P, Lindsay S (2007) Identification of DNA basepairing via tunneling-current decay. Nano Lett 7:3854–3858

    Article  ADS  Google Scholar 

  • Hilal N, Bowen WR, Alkhatib L, Ogunbiyi O (2006) A review of atomic force microscopy applied to cell interactions with membranes. Chem Eng Res Des 84(A4):282–292

    Google Scholar 

  • Hölzel R (2009) Dielectric and dielectrophoretic properties of DNA. IET Nanobiotechnol 3:28–45.

    Article  Google Scholar 

  • Hsiung L-C, Yang C-H, Chiu C-L, Chen C-L, Wang Y, Lee H, Cheng J-Y, Ho M-C, Wo AM (2008) A planar interdigitated ring electrode array via dielectrophoresis for uniform patterning of cells. Biosens Bioelectron 24:869–875.

    Article  Google Scholar 

  • Kang Y, Cetin B, Wu Z, Li D (2009) Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle. Electrochim Acta 54:1715–1720

    Article  Google Scholar 

  • Kawakatsu H, Saya D, Kato A, Fukushima K, Tosiyoshi H, Fujita H (2002) Millions of cantilevers for atomic force microscopy. Rev Sci Instrum 73:1188–1192

    Article  ADS  Google Scholar 

  • Kumar S, Yoon S-H, Kim G-H (2009) Bridging the nanogap electrodes with gold nanoparticles using dielectrophoresis techniques. Curr Appl Phys 9:101–103

    Article  ADS  Google Scholar 

  • Le Grimellec C, Milhiet PE, Perez E, Pincet F, Aimé J-P, Emiliani V, Thoumine O, Lionnet T, Croquette V, Allemand J-F, Bensimon D (2010) Nanoforce and imaging. In: Boisseau P, Houdy P, Lahmani M (eds) Nanoscience. Nanobiotechnology and nanobiology. Springer, Berlin

    Google Scholar 

  • Lyubchenko Y, Shyakhtenko LS, Ando T (2011) Imaging of nucleic acids with atomic force microscopy. Methods 54:274283

    Article  Google Scholar 

  • Mou JX et al (1996) High resolution surface structure of E-coli GroES oligomer by atomic force microscopy. FEBS Lett 381:161–164

    Article  Google Scholar 

  • Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2785–2809

    Article  ADS  Google Scholar 

  • Pethig R (2010) Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4:022811

    Article  Google Scholar 

  • Rajagopalan J, Saif MTA (2011) MEMS sensors and microsystems for cell mechanobiology. J Micromech Microeng 21:054002.

    Article  Google Scholar 

  • Roncali E, Tavitian B, Texier Ie, Peltié P, Perraut F, Boutet J, Cognet L, Lounis B, Marguet D, Thoumine O, Tramier M (2010) Optical tools. In: Boisseau P, Houdy P, Lahmani M (eds) Nanoscience. Nanobiotechnology and nanobiology. Springer, Berlin

    Google Scholar 

  • Sarid D (1994) Scanning force microscopy with applications to electronic, magnetic and atomic forces. Oxford University Press, New York.

    Google Scholar 

  • Shapir E, Chen H, Calzoni A, Cavazzoni C, Ryndyk DA, Cuniberti G, Kotlyar A, di Felice R (2008) Electronic structure of single DNA molecules resolved by transverse scanning tunneling spectroscopy. Nat Mater 7:68–74

    Article  ADS  Google Scholar 

  • Stoltz M, Gottardd R, Raiter R, Miot S, Martin I, Imer R, Staufer U, Raducanu A, Düggelin M, Bascong W, Daniels AU, Friederich MF, Aszodi A, Aebi U (2009) Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscope. Nat Nanotechnol 4:186–192

    Article  ADS  Google Scholar 

  • Tanaka H, Kawai T (2009) Partial sequencing of single DNA molecule with a scanning tunneling microscope. Nat Nanotechnol 4:518–522

    Article  ADS  Google Scholar 

  • Tuukkanen S, Toppari JJ, Kuzyk A, Hirviniemi L, Hytönen VP, Ihalainen T, Törmä P (2006) Carbon nanotubes as electrodes for dielectrophoresis of DNA. Nano Lett 6:1339–1343

    Article  ADS  Google Scholar 

  • Wang MD, Yin H, Landick R, Gelles J, Block SM, Stretching DNA (1997) with optical tweezers. Biophys J 72:1335–1346

    Article  Google Scholar 

  • Wilson NR, Macpherson J (2009) Carbon nanotube tips for atomic force microscopy. Nat Nanotechnol 4:483–491

    Article  ADS  Google Scholar 

  • Xu M, Enders RG, Arakawa Y (2007) Electronic signature of DNA bases. Small 3:1539–1543

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dragoman, D., Dragoman, M. (2012). Imaging and Manipulation of Biomolecules. In: Bionanoelectronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25572-4_3

Download citation

Publish with us

Policies and ethics