Skip to main content

Sensing of Biomolecules

  • Chapter
  • First Online:
Bionanoelectronics

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This chapter is dedicated to the label-free detection of various biomolecules using nanodevices such as field-effect transistors having channels with nanometric dimensions made from various nanomaterials like nanowires, nanotubes, or graphene; cantilevers, optical waveguides, nanopores, and other nanosized devices will be described for sensing of biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A., Linman MJ, Cheng Q (2011) New trends in instrumentation design for surface plasmon resonance-based sensors. Biosensors Bioelectronics 26:1815–1824

    Article  Google Scholar 

  • Akeson M,Branton D, Kasianowiccz JJ, Brandin E, Deamer DW (1999) Microsecond time scale discrimination among polycytidylic acid, polyadenylic acid and polyuridylic acid as homopolymers or as segments with single RNA molecules. Biophys J 77:3227

    Article  Google Scholar 

  • Arshak K, Moore E, Lyons GM, Harris J, Clifford S (2004) A review of gas sensors employed in electronic nose applications. Sensor Rev 24:181–198

    Article  Google Scholar 

  • Atashbar MZ, Bejcek BE, Singamaneni S (2006) Carbon nanotube network-based biomolecule detection. IEEE Sensors J 6:524–528

    Article  Google Scholar 

  • Barnes WL (2006) Surface plasmon-polariton length scales: a route to sub-wavelength optics. J Phys A 8:S87–S93

    Google Scholar 

  • Boisen A, Dohn S, Keller SS, Schmid S, Tenje M (2011) Cantilever-like micromechanical sensors. Rep Prog Phys 74:036101

    Google Scholar 

  • Burg TP, Godin M, Knudsen SM, Schen W, Carlson G, Foster JS, Babcock K, Manalis SC (2007) Weighing of single cell and single nanoparticles in fluid. Nature 446:1066–1069

    Article  ADS  Google Scholar 

  • Capobianco JA, Shih W-H, Leu J-H, Lo GC-F, Shih WY (2010) Label free detection of the white spot syndrome virus using lead magnesium niobate-lead titanate piezoelectric microcantilever sensors. Biosensors Bioelectronics 26:964–969

    Article  Google Scholar 

  • Chand A, Viani MB, Scaffer TE, Hansma PK (2000) Microfabricated small metal cantilever with silicon tip for atomic force microscopy. J Microelectromech Syst 9:112–116

    Article  Google Scholar 

  • Chen Y,Wang X, Hong MK, Rosenberg CL, Reinhard BM, Erramilli S, Mohanty P (2010) Nanoelectronic detection of breast cancer biomarker. Appl Phys Lett 97:233702

    Article  ADS  Google Scholar 

  • Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM (2003) High performance silicon nanowire field effect transistor. Nano Lett 3:149–152

    Article  ADS  Google Scholar 

  • Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2:209–215

    Article  ADS  Google Scholar 

  • Dequesnes M, Rotkin SV, Aluru NR (2002) Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology 13:120–131

    Article  ADS  Google Scholar 

  • Dragoman M, Dragoman D (2008) Plasmonics: applications to nanoscale terahertz and optical devices. Progr Quantum Electronics 32:1–48

    Article  ADS  Google Scholar 

  • Dragoman M, Dragoman D (2009) Nanoelectronics. Principles and devices, Artech House, Boston

    Google Scholar 

  • Englebienne P, van Hoonacker A, Verhas M (2003) Surface plasmon resonances: principles, methods and applications in biomedical sciences. Spectroscopy 17:255–273

    Article  Google Scholar 

  • Eom K, Park HS, Yoon DS, Kwon T (2011) Phys Rep 503:115–163

    Article  ADS  Google Scholar 

  • Fan X, White IM, Shopova SI, Zhu H, Sutter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim 620:8–26

    Article  Google Scholar 

  • Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko JA (2010) Graphene as a subnanometre trans-electrode membrane. Nature 467:190–194

    Article  ADS  Google Scholar 

  • Gracheva ME, Aksimentiev A, Leburton J-P (2006) Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor. Nanotechnology 17:3160–3165

    Article  ADS  Google Scholar 

  • Gruner G (2006) Carbon nanotube transistors for biosensing applications. Anal Bioanal Chem 384:322–335

    Article  Google Scholar 

  • Gupta A, Akin D, Bashir R (2004) Single virus particles mass detection using microresonators with nanoscale thickness. Appl Phys Lett 84:1976–1978

    Article  ADS  Google Scholar 

  • Hansen KH, Ji H-F, Wu G, Datr R, Cote R, Mujumdar A, Thundat T (2001) Anal Chem 73:1576–1571

    Google Scholar 

  • Harris JGE, et al. (1996) Fabrication and characterization of 100 nm-thick GaAs cantilevers. Rev Sci Instrum 67:13591–3593

    Article  ADS  Google Scholar 

  • Hamamoto K, Micheletto R, Oyama M, Umar AA, Kawai S, Y. Hutter E., Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706

    Google Scholar 

  • Hunt HK, Armani AM (2010) Label-free biological and chemical sensors. Nanoscale 2:1544–1559

    Article  ADS  Google Scholar 

  • Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Matter 16:1685–1706

    Article  Google Scholar 

  • Ilic B, Craihead HG, Krylov S, Senaratne W, Ober C, Neuzil P (2004a) Attogram detection using nanoelectromechanical oscillators. J Appl Phys 95:3694–3703

    Article  ADS  Google Scholar 

  • Ilic B, Yang Y, Craighead HG (2004b) Virus detection using nanoelectromechanical devices. Appl Phys Lett 85:2604–2606

    Article  ADS  Google Scholar 

  • Ivanov AP, Instuli E, McGilvery C, Baldwin G, McComb DW, Albrecht T, Edel JB (2011) DNA tunneling detector embedded in a nanopore. Nano Lett 11:279–285

    Article  ADS  Google Scholar 

  • Iwasaki Y, Tobita T, Horiuchi, Seyama M (2006) Chemical sensors and surface plasmon resonance biosensors. NTT Tech Rev 4:21–29

    Google Scholar 

  • Kang BS, Pearton SJ, Chen JJ, Ren F, Johnson JW, Therrien RJ, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2006) Electrical detection of deoxyribonucleic acid hybridization with AlGaN/GaN high electron mobility transistors. Appl Phys Lett 89:122102

    Article  ADS  Google Scholar 

  • Kang DS, Wang HT, Ren F, Pearton SJ (2008) Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors. J Appl Phys 104:031101

    Article  ADS  Google Scholar 

  • Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical resistor. Science 287:622–625

    Article  ADS  Google Scholar 

  • Kowalczyk SW, Hall AR, Dekker C (2010) Detection of local protein structures along DNA using solid-state nanopores, Nano Lett 10:324–328

    Article  ADS  Google Scholar 

  • Kuzmych O, Allen BL, Star A (2007) Carbon nanotube sensors for exhaled breath components. Nanotechnology 18:37502

    Article  Google Scholar 

  • Lamoureaux SK (2005) Casimir force: background, experiments, and applications. Rep Prog Phys 68:201–236

    Article  ADS  Google Scholar 

  • Lee Y, Lee S, Seo H, Jeon S, Moon W (2008) Label-free detection of a biomarker with piezoelectric micro cantilever based on mass micro balancing. J Assoc Lab Automation (JALA) 13:259–264

    Article  Google Scholar 

  • Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube sensors for gas and organic vapour detection. Nano Lett 3:929–933

    Article  ADS  Google Scholar 

  • Li J, Stein D, McMullan C, Branton D, Azis MJ, Golovchenko JA (2001) Ion-beam sculpturing at nanometre length scale. Nature 412:166–169

    Article  ADS  Google Scholar 

  • Liao Y-C Lin M Bao R Cheng J, Bai Y, Liu Y. Qu, Wang KL, Huang Y, Duan X, High-speed graphene transistors with a self-aligned gate. Nature 467:305–308 (2010)

    Google Scholar 

  • Lu J.-Q, Zhang X-G (2008) Nucleotide capacitance calculation for DNA sequencing. Biophys J 95:L60–L62

    Article  Google Scholar 

  • Lu Y, Goldsmith BR, Kybert NJ, Johnson ATC (2010) DNA-decorated graphene chemical sensors. Appl Phys Lett 97:083107

    Article  ADS  Google Scholar 

  • Lu W, Lieber CM (2006) Semiconductor nanowires. J Phys D 39:R387–R406

    Article  ADS  Google Scholar 

  • Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nat Mater 6:841–850

    Article  ADS  Google Scholar 

  • Lundstrom M, Guo J (2006) Nanoscale transistors: device physics, modeling and simulation, Springer, Heidelberg

    Google Scholar 

  • Moore GE (1995) Lithography and the future of the Moore Law. Proc SPIE 2437:2–17

    Article  ADS  Google Scholar 

  • Ma L, Cockroft SL (2010) Biological nanopores for single-molecule biophysics. ChemBioChem 11:25–34

    Article  Google Scholar 

  • Natori K (1994) Ballistic metal-oxide-semiconductor field effect transistor. J Appl Phys 76;4879–4890

    Article  ADS  Google Scholar 

  • Mao S, Lu G, Yu K, Bo Z, Chen J (2010) Specific protein detection using thermally reduced graphene oxide sheet decorated with gold antibody conjugates. Adv Mater 22:3521–3526

    Article  Google Scholar 

  • Nair PR, Alam MA (2007) Design considerations of silicon nanowire biosensors. IEEE Trans Electron Dev 54:3400–3408

    Article  ADS  Google Scholar 

  • Nishio M, et al. (2005) Carbon nanotube oscillator toward zeptogram detection. Appl Phys Lett 86:133111

    Article  ADS  Google Scholar 

  • Ohtake T, Hamai C, Uono T, Tabata H, Kawai T (2004) Immobilization of probe DNA on \({\mathrm{Ta}}_{2}{\mathrm{O}}_{5}\) thin film and detection of hybridized helix DNA using IS-FET, Japanese. J Appl Phys 43:L1137–L1139

    Article  ADS  Google Scholar 

  • Pearton SJ, Ren F, Wang Y-L, Chu BH, Chen KH, Chang CY, W. Lim, J. Lin, Norton DP (2010) Recent advances in wide bandgap semiconductor biological and gas sensors. Progr Mater Sci 55:1–59

    Article  Google Scholar 

  • Patolsky F, Timko BP, Zhang GF, Lieber CM (2007) Nanowire-based nanoelectronic devices in life sciences. MRS Bull 32:142–149

    Article  Google Scholar 

  • Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4:649–673

    Article  ADS  Google Scholar 

  • Peng G, Hakim H, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Tisch U, Haick H (2010) Detection of lung, breast, colorectal and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer 103:542–551

    Article  Google Scholar 

  • Petersen KE (1978) Dynamic micromechanics on silicon; techniques and devices. IEEE Trans Electron Devices 25:1241–1249

    Article  Google Scholar 

  • Qi P, Vermesh O, Grecu M, Javey A, Wang Q, Dai H, Peng S, Cho KJ (2003) Towards large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3:347–351

    Article  ADS  Google Scholar 

  • Rahman A, Guo J, Datta S, Lundstrom MS (2003) Theory of ballistic nanotransistors. IEEE Trans Electron Devices 50:1853–1864

    Article  ADS  Google Scholar 

  • Robelek R, Wegener J (2010) Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy. Biosensors 25:1221–1224

    Google Scholar 

  • Shankaran DR, Gobi KV, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors Actuators B 121:158–177

    Article  Google Scholar 

  • Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    Article  ADS  Google Scholar 

  • Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW, Vandersypen LMK, Dekker C (2010) DNA translocation through graphene nanopores. Nano Lett 10:3163–3167

    Article  ADS  Google Scholar 

  • Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496

    Article  ADS  Google Scholar 

  • Skinner GM, van den Hout M, Broekmans O, Dekker C, Dekker NH (2009) Distinguishing single and double stranded nucleic molecules using solid state nanopores. Nano Lett 9:2593–2960

    Article  Google Scholar 

  • Sorgenfrei S, Chiu C-Y, Gonzalez Jr RL, Yu YJ, Kim P, Nuckolls C, Shepard KL (2011) Label-free single-molecule detection of DNA-hybridization kinetics with carbon nanotube field-effect transistor. Nat Nanotechnol 6:126–132

    Article  ADS  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  Google Scholar 

  • Shur MS (2002) Low ballistic mobility in submicron HEMTs. IEEE Electron Device Lett 23:511–513

    Article  ADS  Google Scholar 

  • Sapmaz S, Blatner YaM, Gurevich L, van der Zant HSJ (2003) Carbon nanotubes as nanoelectromechanical systems. Phys Rev B 67:235414

    Article  ADS  Google Scholar 

  • Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    Article  Google Scholar 

  • Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of solid state nanopores with single-nanometre precision. Nat Mater 2:537–540

    Article  ADS  Google Scholar 

  • Stowe TD, Yasamura K, Kenny TW, Botkin D, Wago K, Rugar D (1997) Attonewton force detection using ultrathin silicon cantilevers. Appl Phys Lett 71:288–290

    Article  ADS  Google Scholar 

  • Strike DJ, Meijerink MGH, Koudelka-Hep M (1999) Electronic noses – a mini-review Fresenius. J Anal Chem 364:499–505

    Google Scholar 

  • Van der Spiegel J (2004) Advances in microelectronics – from microscale to nanoscale devices. In: Di Ventra M, Evoy S, Heflin JR Jr (eds) Introduction to nanoscale science and technology, Kluwer Academic Publishers, Dordrecht 217–259

    Chapter  Google Scholar 

  • Wang J, Lundstrom M (2003) Ballistic transport in high electron mobility transistors. IEEE Trans Electron Dev 50:1604–1609

    Article  ADS  Google Scholar 

  • Wang Y-L, Chu BH, Chen KH, Chang CY, Lele TP, Papadi G, Coleman JK, Sheppard BJ, Dungen CF, Pearton SJ, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ, Ren F (2009) Fast detection of protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors. Appl Phys Lett 94:243901

    Article  ADS  Google Scholar 

  • Wanunu M, Dadosh T, Ray T, Jin J, McReynolds L, Drndi M (2010) Rapid electronic detection of microRNAs using thin nanopore sensors. Nat Nanotechnol 5:807–814

    Article  ADS  Google Scholar 

  • Xiang J, Wei L, Hu Y, Wu Y, Yan H, Lieber CM (2006) Ge/Si nanowire heterostructures as high performance field effect transistors. Nature 441:489–493

    Article  ADS  Google Scholar 

  • Xu M, Fujita D, Hanagata N (2009) Perspectives and challenges of emerging single-molecule DNA sequencing technologies. Small 5:2638–2649

    Article  Google Scholar 

  • Xuan G, Kolodzey J, Kapoor V, Gonye G (2005) Characteristics of the field-effect devices with gate oxide modification by DNA. Appl Phys Lett 87:103903

    Article  ADS  Google Scholar 

  • Yang W, Thordarson P, Gooding JJ, Ringer SP, Braet F (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18:412001

    Article  Google Scholar 

  • Yuan W, Ho HP, Wong CL, Kong SK, Lin C (2006) Surface plasmon resonance biosensor incorporated in a Michelson interferometry with enhanced sensitivity. IEEE Sensor J 7:70–73

    Article  Google Scholar 

  • Zilberman Y, Tisch U, Shuster G, Pisula W, Feng X, Müllen K, Haick H (2010) Carbon nanotube/hexa-peri-hexabenzocoronene bilayers for discrimination between nonpolar volatile organic compounds of cancer and humid atmospheres. Adv Mater 22:4317–4320

    Article  Google Scholar 

  • Zhang T, Mubeen S, Myung NV, Deshusses MA (2008) Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19:332001

    Article  Google Scholar 

  • Zhu S-E, R. Shabani, J. Rho, Y. Kim, B.H. Hong, J.-H. Ahn, H.J. Cho (2011) Graphene-based bimorph microactuators. Nano Lett 11:977–981

    Article  ADS  Google Scholar 

  • Zwolak M, Di Ventra M (2005) Electronic signature of DNA nucleotides via transverse transport. Nano Lett 5:421–424

    Article  ADS  Google Scholar 

  • Zwolak M, Di Ventra M (2008) Physical approaches to DNA sequencing and detection. Rev Mod Phys 80:141–165

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dragoman, D., Dragoman, M. (2012). Sensing of Biomolecules. In: Bionanoelectronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25572-4_2

Download citation

Publish with us

Policies and ethics