Skip to main content

Populations of Excited Parabolic States of Hydrogen Beam in Fusion Plasmas

  • Chapter
  • First Online:
Atomic Processes in Basic and Applied Physics

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 68))

Abstract

The injection of a neutral beam into the core of magnetically confined plasmas is a foundation for various plasma diagnostics, including charge-exchange recombination spectroscopy, beam emission spectroscopy, and motional Stark effect diagnostics. We review the current status of statistical and nonstatistical collisional-radiative models used for calculation of populations of hydrogen beam excited states. The recently developed collisional-radiative (CR) model in parabolic states, which utilizes collisional data calculated in the Glauber approximation, is discussed in detail. CR simulations with this model show nonstatistical emission for the σ and π components of the HαStark multiplet and provide m-resolved populations. The results of simulations are in excellent agreement with the systematic motional Stark effect (MSE) measurements from the JET tokamak.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Hemsworth et al., Nucl. Fusion 49, 045006 (2009)

    Google Scholar 

  2. A. Malaquias et al., Rev. Sci. Instrum. 75, 3393 (2004)

    Google Scholar 

  3. R.C. Isler, Phys. Rev. Lett. 38, 1359 (1977)

    Google Scholar 

  4. M.G. von Hellermann et al., Rev. Sci. Instrum. T120, 19 (2005)

    Google Scholar 

  5. F.M. Levinton et al., Phys. Rev. Lett. 63, 2060 (1989)

    Google Scholar 

  6. W. Mandl, R.C. Wolf, M.G. von Hellermann, H.P. Summers, Plasma Phys. Contr. Fusion 35, 1373 (1993)

    Google Scholar 

  7. W.W. Heidbrink, K.H. Burrell, Y. Luo, N.A. Pablant, E. Ruskov, Plasma Phys. Contr. Fusion 46, 1 (2004)

    Google Scholar 

  8. E. Delabie et al., Rev. Sci. Instrum. 79, 10E552 (2008)

    Google Scholar 

  9. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory(Pergamon, Oxford, 1976), p. 344

    Google Scholar 

  10. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms(Plenum, New York, 1977), p. 234

    Google Scholar 

  11. R. Uhlemann, R.S. Hemsworth, G. Wang, H. Euringer, Rev. Sci. Instrum. 64, 974 (1992)

    Google Scholar 

  12. E. Delabie et al., Plasma Phys. Contr. Fusion 52, 125008 (2010)

    Google Scholar 

  13. N. Ryde, Atoms and Molecules in Electric Fields(Almqvist Wiksell International, Stockholm, 1976), p. 204

    Google Scholar 

  14. M.G. von Hellermann et al., Nucl. Instrum. Phys. Res. A 623, 720 (2010)

    Google Scholar 

  15. T.G. Winter, Phys. Rev. A 80, 032701 (2009)

    Google Scholar 

  16. D.R. Schultz, M.R. Strayer, J.C. Wells, Phys. Rev. Lett. 82, 3976 (1999)

    Google Scholar 

  17. E.Y. Sidky, C.D. Lin, Phys. Rev. A 65, 012711 (2001)

    Google Scholar 

  18. N. Toshima, Phys. Rev. A 50, 3940 (1994)

    Google Scholar 

  19. D.R. Schultz, T.-G. Lee, S.D. Loch, J. Phys. B: At. Mol. Opt. Phys. 43, 144002 (2010)

    Google Scholar 

  20. C.D. Boley, R.K. Janev, D.E. Post, Phys. Rev. Lett. 52, 534 (1984)

    Google Scholar 

  21. R.C. Isler, R.E. Olson, Phys. Rev. A 37, 3399 (1988)

    Google Scholar 

  22. I.H. Hutchinson, Plasma Phys. Contr. Fusion 44, 71 (2002)

    Google Scholar 

  23. H.P. Summers, The ADAS User Manual, version 2.6 (2004), http://adas.phys.strath.ac.uk

  24. O. Marchuk et al., Rev. Sci. Instrum. 79, 10F532 (2008)

    Google Scholar 

  25. P.D. Fainstein, V.H. Ponce, R.D. Rivarola J. Phys. B: At. Mol. Opt. Phys. 23, 1481 (1990)

    Google Scholar 

  26. R.K. Janev, J.J. Smith, Suppl. J. Nucl. Fusion 4(1993)

    Google Scholar 

  27. G.H. Olivera, R.D. Rivarola, P.D. Fainstein, Phys. Rev. A 51, 847 (1995)

    Google Scholar 

  28. International Atomic Energy Agency, http://www-amdis.iaea.org/ALADDIN/collision.html

  29. H.R. Griem, Plasma Spectroscopy(McGraw-Hill Book Company, New York, 1964), p. 150

    Google Scholar 

  30. D.H. Sampson, J. Phys. B: At. Mol. Phys. 10, 749 (1977)

    Google Scholar 

  31. T. Fujimoto, Plasma Spectroscopy(Clarendon Press, Oxford, 2004), p. 136

    Google Scholar 

  32. H.J. Kunze, Introduction to Plasma Spectroscopy(Springer, Berlin, 2009), p. 141

    Google Scholar 

  33. E. Luc-Koenig, A. Bachelier, J. Phys B.: Atom. Molec. Phys. 13, 1743 (1980)

    Google Scholar 

  34. R.J. Damburg, V.V. Kolosov, J. Phys B.: Atom. Molec. Phys. 9, 3149 (1976)

    Google Scholar 

  35. P. Lotte et al., in Proceedings of 29th EPS Conference on Plasma Physics and Control Fusion, http://crppwww.epfl.ch/%7Eduval/O2_01.pdf(2002)

  36. R.J. Damburg, V.V. Kolosov, J. Phys B.: Atom. Molec. Phys. 11, 1921 (1978)

    Google Scholar 

  37. A. Boileau et al., J. Phys. B: At. Mol. Opt. Phys. 22, L145 (1989)

    Google Scholar 

  38. M.F. Gu, C.T. Holcomb, R.J. Jayakuma, S.L. Allen, J. Phys. B: At. Mol. Opt. Phys. 41, 095701 (2008)

    Google Scholar 

  39. O. Marchuk et al., J. Phys. B: At. Mol. Opt. Phys. 43, 011002 (2010)

    Google Scholar 

  40. V. Franco, B.K. Thomas, Phys. Rev. A 4, 945 (1971)

    Google Scholar 

  41. K. Omidvar, At. Data Nucl. Data Tables 28, 215 (1983)

    Google Scholar 

  42. V. Fisher, V. Bernshtam, H. Goelten, Y. Maron, Phys. Rev. A 53, 2425 (1996)

    Google Scholar 

  43. A.R. Edmonds, Angular Momentum in Quantum Mechanics(Princeton University Press, Princeton, 1957), p. 53

    Google Scholar 

  44. P.A. Braun, J. Phys. B: At. Mol. Opt. Phys. 24, 2313 (1991)

    Google Scholar 

  45. K. Blum, Density Matrix Theory and Applications(Plenum Press, New York, 1981), p. 77

    Google Scholar 

  46. O. Schöller, J.S. Briggs, R.M. Dreizler, J. Phys. B.: At. Mol. Phys. 19, 2505 (1986)

    Google Scholar 

  47. M.J. Alguard, C.W. Drake, Phys. Rev. A 8, 27 (1973)

    Google Scholar 

  48. J.R. Ashburn et al., Phys. Rev. A 40, 4885 (1989)

    Google Scholar 

  49. O. Marchuk et al., Nucl. Instrum. Phys. Res. A 623, 738 (2010)

    Google Scholar 

  50. Yu.V. Ralchenko, Y. Maron, Quant. Spectr. Rad. Transf. 71, 609 (2001)

    Google Scholar 

  51. N. Toshima, H. Tawara, NIFS Report NIFS-DATA 26, 32 (1995)

    Google Scholar 

  52. O. Marchuk, Yu. Ralchenko, D.R. Schultz, Plasma Phys. Contr. Fusion (to be submitted)

    Google Scholar 

Download references

Acknowledgements

O.M is thankful to the members of Atomic Spectroscopy Group at NIST for their hospitality. Work of Yu.R. supported in part by the Office of the Fusion Energy Sciences of the US Department of Energy.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marchuk, O., Ralchenko, Y. (2012). Populations of Excited Parabolic States of Hydrogen Beam in Fusion Plasmas. In: Shevelko, V., Tawara, H. (eds) Atomic Processes in Basic and Applied Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25569-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25569-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25568-7

  • Online ISBN: 978-3-642-25569-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics