Skip to main content

Atomic and Molecular Data for Industrial Application Plasmas

  • Chapter
  • First Online:
  • 1357 Accesses

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 68))

Abstract

As interest has increased in the interaction between low-temperature plasmas and materials, the role of modeling and simulation of processing plasmas has become important in understanding the effects of charged particles and radicals in plasma applications. Also, in order to understand the behavior and properties of chemically active plasma, atomic and molecular processes have become a rapidly growing area of scientific endeavor that holds great promise for practical applications for industrial fields. Thus, in this chapter, we briefly introduce the applications of low-temperature plasma, especially plasma processing in semiconductor manufacturing, and what kind of data needed in plasma processing, how to develop the reaction mechanisms, and how it applied to the simulation. 0D global modeling of ICP plasma-etching equipment and development of a two-dimensional fluid simulator for a SiH4discharge are given as an example. In addition, we introduce the line-intensity ratio method for plasma diagnostic, it can be a good example how atomic and molecular data can be used plasma diagnostics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Loidl et al., Mucl. Instr. Meth. A 559, 769 (2006)

    Google Scholar 

  2. D.W. Shoesmith, J. Nucl. Mater. 282, 1 (2000)

    Google Scholar 

  3. G.R. Choppin, M.Kh. Khankhasayev, in Chemical Separation Technologies and Related Methods of Nuclear Waste Management. NATO Science Series (Kluwer, Dordrecht, 1999)

    Google Scholar 

  4. National Research Council, Plasma Processing of Materials: Scientific Opportunities and Technological Challenges(National Academic Press, Washington, DC, 1991)

    Google Scholar 

  5. National Research Council: Database Needs for Modeling and Simulation of Plasma Processing(National Academic Press, Washington, DC, 1996)

    Google Scholar 

  6. J. Meichsner, in Low Temperature Plasmas in Plasma Physics: Confinement, Transport and Collective Effects. ed. by A. Dinklage et al. Springer Lecture Notes, vol. 670 (Springer, Berlin, 2005)

    Google Scholar 

  7. National Research Council: Plasma Science: Advancing Knowledge in the National Interest(National Academy Press, Washington, DC, 2010)

    Google Scholar 

  8. Report of the Basic Energy Science Workshop on Electron Scattering for Materials Characterization, Future Science Needs and Opportunities for Electron Scattering: Next-Generation Instrumentation and Beyond, Report of a U.S. Department of Energy Office of Basic Energy Science Workshop, March 1–2, 2007, Washington DC

    Google Scholar 

  9. N.J. Mason: Electron Driven Processes: Scientific Challenges and Technological Opportunities(Springer, Berlin, 2005)

    Google Scholar 

  10. D.B. Graves, M.J. Kushner, Low Temperature Plasma Science: Not only the Fourth State of Matter but All of Them, Report of the Department of Energy Office of Fusion Energy Sciences Workshop on Low Temperature Plasmas, March 25–27, (2008)

    Google Scholar 

  11. T. Makabe, Z. Petrovic, in Plasma Electronics: Applications in Microelectronic Device Fabrication. Series in Plasma Physics (Taylor & Francis, London, 2006)

    Google Scholar 

  12. A. Fridman Plasma Chemistry(Cambridge University Press, New York, 2008)

    Google Scholar 

  13. N.J. Mason: J. Phys. D Appl. Phys. 42, 194003 (2009)

    Google Scholar 

  14. H.W. Lee et al., J. Phys. D Appl. Phys. 44, 053001 (2011)

    Google Scholar 

  15. M.J. Kushner, Bull. Am. Phys. Soc. 55, 107 (2010)

    Google Scholar 

  16. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and MaterialsProcessing, 2nd edn. (Wiley-Interscience, New York, 2005)

    Google Scholar 

  17. R.L. Champion, L.D. Doverspike, in Electron-Molecule Interactions and Their Applications, ed. by L.G. Christophorou (Academic, New York, 1984)

    Google Scholar 

  18. J.D. Morrison, A.J. Nicholson, J. Chem. Phys. 20, 1021 (1952)

    Google Scholar 

  19. R. Basner, R. Foest, M. Schmidt, F. Hempel, K. Becker, in Ions and Neutrals in the Ar-TEOS RF Discharge. Proceedings of the 23rd International Conference on Phenomena in Ionized Gases, vol. IV, Toulouse, July 1997, pp. 196–197

    Google Scholar 

  20. D.C. Schram, M.C.M. van de Sanden, R.J. Severens, W.M.M. Kessels, J. Phys. IV 8, 217–230 (1998)

    Google Scholar 

  21. B.F. Gordiets, C.M. Ferreira, M.J. Pinheiro, A. Ricard, Plasma Sources Sci. Technol. 7, 363–378, 378–388 (1998)

    Google Scholar 

  22. M. Hayashi, Nagoya Institute of Technology Report, No. IPPJ-AM-19 (1991)

    Google Scholar 

  23. D. Rapp, P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965)

    Google Scholar 

  24. S. Tinck, W. Boullart, A. Bogaerts, J. Phys. D 41, 065207 (2008)

    Google Scholar 

  25. A.V. Vasenkov, X. Li, G.S. Oehrlein, M.J. Kushner, J. Vac. Sci. Technol. A 22, 511 (2004)

    Google Scholar 

  26. N.S. Yoon, S.S. Kim, C.S. Chang, D.I. Choi, J. Korean Phys. Soc. 28, 172 (1995)

    Google Scholar 

  27. Z.L. Dai, Y.N. Wang, T.C. Ma, Phys. Rev. E 65, 036403 (2002)

    Google Scholar 

  28. A. Metze, D.W. Ernie, H.J. Oskam, J. Appl. Phys. 60, 3081 (1986)

    Google Scholar 

  29. T. Panagopoulos, D.J. Economou, J. Appl. Phys. 85, 3435 (1999)

    Google Scholar 

  30. E.A. Edelberg, E.S. Aydil, J. Appl. Phys. 86, 4799 (1999)

    Google Scholar 

  31. P.A. Miller, M.E. Riley, J. Appl. Phys. 82, 3689 (1997)

    Google Scholar 

  32. M.A. Sobolewski, J.-H. Kim, J. Appl. Phys. 102, 113302 (2007)

    Google Scholar 

  33. http://www.esi-group.com/products/multiphysics/ace-multiphysics-suite/ace-suite/cfd-ace

  34. M. Vinodkumar, C. Limbachiya, K. Korot, K.N. Joshipura, Eur. Phys. J. D 48, 333 (2008)

    Google Scholar 

  35. M.J. Kuchner, J. Appl. Phys. 63, 2532 (1988)

    Google Scholar 

  36. E. Meeks, R.S. Larson, P. Ho, S.M. Han, E. Edelberg, E.S. Aydil, J. Vac. Sci. Technol. A 16, 544 (1998)

    Google Scholar 

  37. J.L. Giuliani, V.A. Shamamian, R.E. Thomas, J.P. Apruzese, M. Mulbrandon, R.A. Rudder, R.C. Hendry, A.E. Robson, IEEE Trans. Plasma Sci. 27, 1317 (1999)

    Google Scholar 

  38. O. Leroy, G. Gousset, L.L. Alves, J. Perrin, J. Jolly, Plasma Sources Sci. Technol. 7, 348 (1998)

    Google Scholar 

  39. C.R. Kleijin, Thin Solid Films 365, 294 (2000)

    Google Scholar 

  40. J.S. Yoon, M.Y. Song, J.M. Han, S.H. Hwang, W.S. Chang, B.J. Lee, J. Phys. Chem. Ref. Data 37, 913 (2008)

    Google Scholar 

  41. T. Shimada, Y. Nakamura, Z.L. Petrovic, T. Makabe, J. Phys. D Appl. Phys. 36, 1936 (2003)

    Google Scholar 

  42. N. Sato, Y. Shida, Jpn. J. Appl. Phys. 36, 4794 (1997)

    Google Scholar 

  43. I.H. Hutchinson, Principles of Plasma Diagnostics, 2nd edn. (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  44. H.R. Griem, Plasma Spectroscopy(McGraw-Hill, New York, 1965), pp. 243–253

    Google Scholar 

  45. R. Mewe, Brit. J. Appl. Phys. 18, 107 (1967)

    Google Scholar 

  46. B. Schweer, G. Mank, A. Pospieszczyk, B. Brosda, B. Pohlmeyer, J. Nucl. Mater. 196–198, 174 (1995)

    Google Scholar 

  47. R.F. Biovin, J.L. Kline, E.E. Scime, Phys. Plasmas 8, 5303 (2001)

    Google Scholar 

  48. N.K. Podder et al., Phys. Plasmas 11, 5436 (2004)

    Google Scholar 

  49. S.P. Cunningham, in Conference on Thermonuclear Reactors, Livermore, U.S. Atomic Energy Commission Rep., vol. 279, p. 289 (1955)

    Google Scholar 

  50. R.W.P. McWhiter, in Plasma Diagnostic Techniques, ed. by R.H. Huddlestone, S.L. Leonard (Academic, New York, 1965), ch. 5

    Google Scholar 

  51. S.J. Davies, P.D. Morgan et al., J. Nucl. Mater. 241–243, 426 (1997)

    Google Scholar 

  52. Y. Andrew, S.J. Davies et al., J. Nucl. Mater. 266–269, 1234 (1999)

    Google Scholar 

  53. Y. Andrew, M.G. O’Mullane, Plasma Phys. Contr. Fusion 42, 301 (2000)

    Google Scholar 

  54. W.L. Wiese, M.W. Smith, B.M Glennon, Atomic Transitions Probabilities, vol. 1, National Standard Reference Data System NSRDS-NBS-4 (1996)

    Google Scholar 

  55. D.C. Kwon, W.S. Chang, M. Park, D.H. You, M.Y. Song, S.J. You, Y.H. Im, J.S. Yoon, J. Appl. Phys. 109, 073311 (2011)

    Google Scholar 

Download references

Acknowledgements

The author acknowledges the collaboration of many colleagues in preparing this chapter. Especially thanks to Prof. Y. Itikawa, Prof. H. Tanaka, and Prof. H. Cho for their helpful discussions and the provision of meaningful information. Also author thanks to Dr. Young-Woo Kim, Dae-Chul Kim, Yong-Hyun. Kim, and Dr. Jong-Sik Kim for their unlimited efforts on A+M data research activities.

This work was supported by the Basic Plasma Research(National Fusion Research Institute) and grant funded by the Ministry of Education, Science and Technology. Also, partially supported by the Development of Korea National Standard Reference Dataand program funded by the Ministry of Knowledge Economy.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Song, MY. et al. (2012). Atomic and Molecular Data for Industrial Application Plasmas. In: Shevelko, V., Tawara, H. (eds) Atomic Processes in Basic and Applied Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25569-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25569-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25568-7

  • Online ISBN: 978-3-642-25569-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics