Skip to main content

Solving Extremely Difficult MINLP Problems Using Adaptive Resolution Micro-GA with Tabu Search

  • Conference paper
Learning and Intelligent Optimization (LION 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6683))

Included in the following conference series:

Abstract

Non convex mixed integer non-linear programming problems (MINLPs) are the most general form of global optimization problems. Such problems involve both discrete and continuous variables with several active non-linear equality and inequality constraints. In this paper, a new approach for solving MINLPs is presented using adaptive resolution based micro genetic algorithms with local search. Niching is incorporated in the algorithm by using a technique inspired from the tabu search algorithm. The proposed algorithm adaptively controls the intensity of the genetic search in a given sub-solution space, i.e. promising regions are searched more intensely as compared to other regions. The algorithm reduces the chances of convergence to a local minimum by maintaining a list of already visited minima and penalizing their neighborhoods. This technique is inspired from the tabu list strategy used in the tabu search algorithm. The proposed technique was able to find the best-known solutions to extremely difficult MINLP/NLP problems in a competitive amount of time. The results section discusses the performance of the algorithm and the effect of different operators by using a variety of MINLP/NLPs from different problem domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Geno: General evolutionary numerical optimizer, http://tomopt.com/tomlab/products/geno/

  2. Agrawal, R.B., Deb, K., Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space (1995)

    Google Scholar 

  3. Babu, B., Angira, A.: A differential evolution approach for global optimisation of minlp problems. In: Proceedings of the Fourth Asia Pacific Conference on Simulated Evolution and Learning (SEAL 2002), Singapore, pp. 880–884 (2002)

    Google Scholar 

  4. Coello, C.C.: Constraint-handling using an evolutionary multi-objective optimisation technique. Civil Engineering and Environmental Systems 17, 319–346 (2000)

    Article  Google Scholar 

  5. Colville, A.: A comparative study of non-linear programming codes. Tech. Rep. Report 320-2949, IBM Scientific Centre, New York

    Google Scholar 

  6. Danish, M., Kumar, S., Qamareen, A., Kumar, S.: Optimal solution of minlp problems using modified genetic algorithm. Chemical Product and Process Modeling 1(1) (2006)

    Google Scholar 

  7. El-mihoub, T.A., Hopgood, A.A., Nolle, L., Battersby, A.: Hybrid genetic algorithms: A review. Engineering Letters 13(12), 124–137 (2006)

    Google Scholar 

  8. Floudas, C., Aggarwal, A., Ciric, A.: Global optimum search for nonconvex nlp and minlp problems. Computers & Chemical Engineering 13(10), 1117–1132 (1989)

    Article  Google Scholar 

  9. French, A.P., Robinson, A.C., Wilson, J.M.: Using a hybrid genetic-algorithm/branch and bound approach to solve feasibility and optimization integer programming problems. Journal of Heuristics 7(6), 551–564 (2001)

    Article  MATH  Google Scholar 

  10. Gantovnik, V.B., Gurdal, Z., Watson, L.T., Anderson-Cook, C.M.: A genetic algorithm for mixed integer nonlinear programming problems using separate constraint approximations. Departmental Technical Report TR-03-22, Computer Science, Virginia Polytechnic Institute and State University (2005)

    Google Scholar 

  11. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional, Reading (1989)

    MATH  Google Scholar 

  12. Goldberg, D., Deb, K., Clark, J.: Genetic algorithms, noise, and the sizing of populations. Complex Systems 6, 333–362 (1991)

    MATH  Google Scholar 

  13. Grossmann, I.E.: Review of nonlinear mixed-integer and disjunctive programming techniques. Optimization and Engineering 3, 227–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. (GTOP), E.S.A.E.G.O.T.P., Solutions, http://www.esa.int/gsp/ACT/inf/op/globopt.htm

  15. Himmelblau, D.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)

    MATH  Google Scholar 

  16. Hock, W., Schittkowski, K.: Test examples for non-linear programming codes. LNEMS, vol. 187. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  17. Holland, J.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  18. Homaifar, A., Lai, S.: Constrained optimisation via genetic algorithms. Simulation 62, 242–254 (1994)

    Article  Google Scholar 

  19. Kocis, G., Grossmann, I.: A modelling and decomposition strategy for the minlp optimisation of process flow sheets. Computers and Chemical Engineering 13, 797–819 (1989)

    Article  Google Scholar 

  20. Krishnakumar, K.: Micro-genetic algorithms for stationary and non-stationary function optimization. In: SPIE: Intelligent Control and Adaptive Systems, vol. 1196, pp. 289–296 (1989)

    Google Scholar 

  21. Lemonge, A.C., Barbosa, H.J.: An adaptive penalty scheme for genetic algorithms in structural optimization. International Journal for Numerical Methods in Engineering 59(5), 703–736 (2004)

    Article  MATH  Google Scholar 

  22. Michalewicz, Z., Fogel, D.: How to solve it. In: Modern Heuristics. Springer, Berlin (2000)

    Google Scholar 

  23. Ponsich, A., Azzaro-Pantel, C., Domenech, S., Pibouleau, L.: Some guidelines for genetic algorithm implementation in minlp batch plant design problems. In: Advances in Metaheuristics for Hard Optimization. Natural Computing Series, pp. 293–316. Springer, Heidelberg (2008) ISSN 1619-7127

    Chapter  Google Scholar 

  24. Schlueter, M.: Midaco: Global optimization software for mixed integer nonlinear programming (2009), http://www.midaco-solver.com

  25. Schlueter, M., Gerdts, M.: The oracle penalty method. Journal of Global Optimization 47(2), 293–325 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shannon, C.: A mathematical theory of communication. Bell System Technical Journal 27 (1948)

    Google Scholar 

  27. Young, C., Zheng, Y., Yeh, C., Jang, S.: Information-guided genetic algorithm approach to the solution of minlp problems. Industrial & Engineering Chemistry Research 46(5), 1527–1537 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Munawar, A., Wahib, M., Munetomo, M., Akama, K. (2011). Solving Extremely Difficult MINLP Problems Using Adaptive Resolution Micro-GA with Tabu Search. In: Coello, C.A.C. (eds) Learning and Intelligent Optimization. LION 2011. Lecture Notes in Computer Science, vol 6683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25566-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25566-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25565-6

  • Online ISBN: 978-3-642-25566-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics