Skip to main content

High-Precision Measurement Method of Time-Interval Based on Pseudo-Random Sampling

  • Conference paper

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 122))

Abstract

Based on pseudo-random sampling a high-precision measurement method of time-interval for pulsed laser ranging is presented for the first time. In the method, time-intervals of laser pulses are controlled by a chirp signal generated using a Voltage-Controlled Crystal Oscillator. The time-intervals are unequal pseudo-random sequences. Pulse laser signals reflected from the object become sampling signals after they pass through a time discriminating circuit. Characteristics of measured signals are represented by the mapping of sampling time points on a referenced sinusoid signal. Then high-precision measurement of time-intervals can be implemented using a phase estimation algorithm. This method is simple in theory and easy to realize. In experiments using 15MHz reference clock, it is achieved that the measurement precision of time is 16ps.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kalisz, J.: Review of methods for time intevral measurements with Pieoseeond resolution. J. Metrologia 41(1), 17–32 (2004)

    Article  Google Scholar 

  2. Koskinen, M., Kostamovaara, J.: An Averaging Mode Time-to-Amplitude Converter with Picosecond Resolution. IEEE Transactions on Instrumentation and Measurement 42(4), 866–870 (1993)

    Article  Google Scholar 

  3. Thompson, M.A., Werner, M.W.: Free Running Time to Digital Converter with 1 Nanosecond Resolution. IEEE Transactions on Nuclear Science 35(1), 184–186 (1988)

    Article  Google Scholar 

  4. Santos, D.M., Flasck, J.M.: A CMOS Delay Locked Loop and Sub-Nanosecond Time-To-Digital Converter Chip. IEEE Transactions on Nuclear Science 43(3), 1717–1719 (1996)

    Article  Google Scholar 

  5. Baronti, F., Fanucci, L.: On the Differential Nonlinearity of Time-to-Digital Converters Based on Delay-Locked-Loop Delay Lines. IEEE Transactions on Nuclear Science 48(6), 2424–2432 (2001)

    Article  Google Scholar 

  6. Boujrada, A., Bloyet, D., Tripon, M.: A Digital TDC with a Reduced Number of Delay Line Cells. Nuclear Instruments and Methods in Physics Research, 803–812 (2002)

    Google Scholar 

  7. Moyer, G.C., Clements, M., Liu, W.: Precise Delay Generation Using the Vernier Technique. Electronics Letters 32(18), 1658–1659 (1996)

    Article  Google Scholar 

  8. Dudek, P., Hatfield, J.V.: A High-Resolution CMOS Time-to-Digital Converter Utilizing a Vernier Delay Line. IEEE Transactions on Solid-State Circuits 35(2), 240–247 (2000)

    Article  Google Scholar 

  9. Rahkonen, T.E., Kostamovaara, J.T.: The Use of Stabilized CMOS Delay Lines for the Digitization of Short Time Intervals. IEEE Journal of Solid State Circuits 28(8), 887–894 (1993)

    Article  Google Scholar 

  10. Kalisz, J., Szplet, R.: Field-Programmable-Gate-Array-Based Time-to-Digital Converter with 200-ps Resolution. IEEE Transactions on Instrumentation and Measurement 46(1), 51–55 (1997)

    Article  Google Scholar 

  11. Szplet, R., Kalisz, J., Szymanowski, R.: Interpolating Time Counter with 100 ps Resolution on a Single FPGA Device. IEEE Transactions on Instrumentation and Measurement 49(4), 879–883 (2000)

    Article  Google Scholar 

  12. Zielinski, M., Chaberski, D., Kowalski, M., Frankowski, R., Grzelka, S.: High-resolution time-interval measuring system implemented in single FPGA device. Measurement 35(3), 311–317 (2004)

    Article  Google Scholar 

  13. Zhu, X., Sun, G., Yong, S., Zhuang, Z.: A High-Precision Time Interval Measurement Method Using Phase-Estimation Algorithm. IEEE Transactions on Instrumentation and Measurement 57(11), 2670–2676 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, M., Huang, J., Feng, Y. (2011). High-Precision Measurement Method of Time-Interval Based on Pseudo-Random Sampling. In: Lee, G. (eds) Advances in Automation and Robotics, Vol.1. Lecture Notes in Electrical Engineering, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25553-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25553-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25552-6

  • Online ISBN: 978-3-642-25553-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics