Skip to main content

Variable Sparse Multiple Kernels Learning for Novelty Detection

  • Conference paper
Advances in Automation and Robotics, Vol.1

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 122))

  • 2420 Accesses

Abstract

Novelty detection from multiple information sources is an important problem and selecting appropriate features is a crucial step for solving this problem. In this paper, we propose a novel data domain description algorithm which is inspired by multiple kernel learning and elastic-net-type constrain on the kernel weight. Most Multiple kernel learning algorithms employ the 1-norm constraints on the kernel combination weights, which enforce a sparsity solution but maybe lose useful information. In contrast, imposing the p-norm(p>1) constraint on the kernel weights will keep all the information in the base kernels, which lead to non-sparse solutions and brings the risk of being sensitive to noise and incorporating redundant information. To address this problem, we introduce an elastic-net-type constrain on the kernel weights. It finds the best trade-off between sparsity and accuracy. Furthermore, our algorithm facilitates the grouping effect. The proposed algorithm can be equivalently formalized as a convex-concave problem that can be effectively resolved with level method. Experimental results show that the proposed algorithm converges rapidly and demonstrate its efficiency comparing to other data description algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rakotomamonjy, A., et al.: SimpleMKL. Journal of Machine Learning Research 9, 2491–2521 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Ritter, G., Gallegos, M.T.: Outliers in statistical pattern recognition and an application to automatic chromosome classification. Pattern Recognition Letters 18(6), 525–539 (1997)

    Article  Google Scholar 

  3. Tarassenko, L., et al.: Novelty detection for the identification of masses in mammograms. In: Proceedings of the 4th IEE International Conference on Artificial Neural Networks 1995, pp. 442–447 (1995)

    Google Scholar 

  4. Tax, D.M.J., Duin, R.P.W.: Support vector domain description. Pattern Recognition Letters 20 (1999)

    Google Scholar 

  5. Scholkopf, B., et al.: Support Vector Method for Novelty Detection. In: Advances in Neural Information Processing Systems (December 2000)

    Google Scholar 

  6. Lanckriet, G.R.G., et al.: Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research 5, 27–72 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Sonnenburg, S., et al.: Large scale multiple kernel learning. Journal of Machine Learning Research 7, 1531–1565 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Aflalo, J., et al.: Variable Sparsity Kernel Learning. Journal of Machine Learning Research 12, 565–592 (2011)

    MathSciNet  Google Scholar 

  9. Kloft, M., et al.: l(p)-Norm Multiple Kernel Learning. Journal of Machine Learning Research 12, 953–997 (2011)

    MathSciNet  Google Scholar 

  10. Mehmet, G., Ethem, A.: Multiple Kernel Learning Algorithms. Journal of Machine Learning Research 12, 2211–2268 (2011)

    Google Scholar 

  11. Lampert, C.H., Blaschko, M.B.: A multiple kernel learning approach to joint multi-class object detection. In: Annual Symposium of the Deutsche-Arbeitsgemeinschaft-fur-Mustererkennung (DAGM), Munich, Germany (2008)

    Google Scholar 

  12. Longworth, C., Gales, M.J.F., IEEE: Multiple Kernel Learning for speaker verification. In: 33rd IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV (2008)

    Google Scholar 

  13. Qiu, S., Lane, T.: Multiple Kernel Support Vector Regression for siRNA Efficacy Prediction. In: Măndoiu, I., Wang, S.-L., Zelikovsky, A. (eds.) ISBRA 2008. LNCS (LNBI), vol. 4983, pp. 367–378. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Lin, Y.Y., Liu, T.L., Fuh, C.S.: Multiple Kernel Learning for Dimensionality Reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(6), 1147–1160 (2011)

    Article  Google Scholar 

  15. Yeh, C.Y., Huang, C.W., Lee, S.J.: A multiple-kernel support vector regression approach for stock market price forecasting. Expert Systems with Applications 38(3), 2177–2186 (2011)

    Article  Google Scholar 

  16. Suard, F., et al.: Model selection in pedestrian detection using multiple kernel learning. In: IEEE Intelligent Vehicles Symposium, Istanbul, Turkey (2007)

    Google Scholar 

  17. Bach, F.R.: Consistency of the group Lasso and multiple kernel learning. Journal of Machine Learning Research 9, 1179–1225 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Cristianini, N., et al.: On kernel-target alignment. In: Advances in Neural Information Processing Systems 14, vol. 1,2, pp. 367–373 (2002)

    Google Scholar 

  19. Ye, J.P., Ji, S.W., Chen, J.H.: Multi-class discriminant kernel learning via convex programming. Journal of Machine Learning Research 9, 719–758 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Chapelle, O., et al.: Choosing multiple parameters for support vector machines. Machine Learning 46(1-3), 131–159 (2002)

    Article  MATH  Google Scholar 

  21. Srebro, N., Ben-David, S.: Learning Bounds for Support Vector Machines with Learned Kernels. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 169–183. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the Twenty-first International Conference on Machine Learning, pp. 6–13. ACM, Banff (2004)

    Chapter  Google Scholar 

  23. Xu, Z., et al.: An extended level method for efficient multiple kernel learning. In: Advances in Neural Information Processing Systems, vol. 21, pp. 1825–1832 (2009)

    Google Scholar 

  24. Orabona, F., Jie, L.: Ultra-Fast Optimization Algorithm for Sparse Multi Kernel Learning. In: Proceedings of the 28th International Conference on Machine Learning, Bellevue, Washington (2011)

    Google Scholar 

  25. Kloft, M., Brefeld, U., Laskov, P.: Non-sparse multiple kernel learning. In: NIPS Workshop on Kernel Learning: Automatic Selection of Optimal Kernels (2008)

    Google Scholar 

  26. Kloft, M., Nakajima, S., Brefeld, U.: Feature Selection for Density Level-Sets. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5781, pp. 692–704. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Shawe-Taylor, J., Hussain, Z.: Kernel learning for novelty detection. In: Proceedings of the NIPS Workshop on Kernel Learning 2008 (2008)

    Google Scholar 

  28. Haiqin, Y., et al.: Efficient Sparse Generalized Multiple Kernel Learning. IEEE Transactions on Neural Networks 22(3), 433–446 (2011)

    Article  Google Scholar 

  29. Grandvalet, Y.: Least absolute shrinkage is equivalent to quadratic penalization. In: Niklasson, L., Bod´en, M., Ziemske, T. (eds.) Proceedings of the 8th International Conference on Artificial Neural Networks, pp. 201–206 (1998)

    Google Scholar 

  30. Mosek. The MOSEK Optimization Software (2011), http://www.mosek.com/index.php?id=2 (cited 2011)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, X., Ma, Y., Chang, L., Chen, G. (2011). Variable Sparse Multiple Kernels Learning for Novelty Detection. In: Lee, G. (eds) Advances in Automation and Robotics, Vol.1. Lecture Notes in Electrical Engineering, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25553-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25553-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25552-6

  • Online ISBN: 978-3-642-25553-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics