Skip to main content

Convergence in Distribution—Functional Results

  • Chapter
Asymptotics for Associated Random Variables
  • 975 Accesses

Abstract

This chapter addresses functional central limit theorems, that is invariance principles and the convergence of empirical processes. The importance of these processes come, of course, from the several statistical applications that are based on transformations of the random-sum process or of the empirical process. Both these sequences of processes are shown to converge in distribution to suitable Gaussian processes. Some transforms depend closely on the paths of processes, while others are only integral transformations, thus being less sensitive to the regularity of the observed path. These arguments justify that, depending on the functionals that we are interested in, we may require the convergence with respect to the usual Skorokhod space or with respect to some suitable L p space. These, being weaker topological spaces, will be less demanding in order to have the convergence in distribution. The techniques are similar to those used in Chap. 4 but adapted to handle the technicalities that arise from the underlying functional space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, T., Darling, D.: Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Stat. 23, 193–212 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andrews, D., Pollard, D.: An introduction to functional central limit theorems for dependent stochastic processes. Int. Stat. Rev. 62, 119–132 (1994)

    Article  MATH  Google Scholar 

  3. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  4. Billingsley, P.: Probability and Measure. Wiley, New York (1986)

    MATH  Google Scholar 

  5. Birkel, T.: The invariance principle for associated processes. Stoch. Process. Appl. 27, 57–71 (1988)

    Article  MathSciNet  Google Scholar 

  6. Birkel, T.: A functional central limit theorem for positively dependent random variables. J. Multivar. Anal. 44, 314–320 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cremers, H., Kadelka, D.: On weak convergence of integral functionals of stochastic processes with applications to processes taking paths in \(L_{p}^{E}\). Stoch. Process. Appl. 21, 305–317 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Donsker, M.: An invariance principle for certain probability limit theorems. Mem. Amer. Math. Soc. 6 (1951)

    Google Scholar 

  9. Donsker, M.: Justification and extension of Doob’s heuristic approach to the Kolmogorov–Smirnov theorems. Ann. Math. Stat. 23, 277–281 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  10. Doob, J.: Heuristic approach to the Kolmogorov–Smirnov theorems. Ann. Math. Stat. 20, 393–403 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  11. Erdos, P., Käc, M.: On central limit theorems in the theory of probability. Bull. Am. Math. Soc. 52, 292–302 (1946)

    Article  Google Scholar 

  12. Herrndorf, N.: The invariance principle for φ-mixing sequences. Z. Wahrscheinlichkeitstheor. Verw. Geb. 63, 97–108 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ibragimov, I.: Some limit theorems for stationary sequences. Theory Probab. Appl. 7, 349–382 (1962)

    Article  Google Scholar 

  14. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes. Results in Mathematics and Related Areas (3), vol. 23. Springer-Verlag, Berlin (1991)

    MATH  Google Scholar 

  15. Louhichi, S.: Weak convergence for empirical processes of associated sequences. Ann. Inst. Henri Poincaré Probab. Stat. 36, 547–567 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Morel, B., Suquet, C.: Hilbertian invariance principles for the empirical process under association. Math. Methods Stat. 11, 203–220 (2002)

    MATH  MathSciNet  Google Scholar 

  17. Newman, C.: Asymptotic independence and limit theorems for positively and negatively dependent random variables. In: Tong, Y. (ed.) Inequalities in Statistics and Probability, vol. 5, pp. 127–140. Inst. Math. Stat., Hayward (1984)

    Chapter  Google Scholar 

  18. Newman, C., Wright, A.: An invariance principle for certain dependent sequences. Ann. Probab. 9, 671–675 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  19. Newman, C., Wright, A.: Associated random variables and martingale inequalities. Z. Wahrscheinlichkeitstheor. Verw. Geb. 59, 361–371 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  20. Oliveira, P.E.: Invariance principles in L 2[0,1]. Comment. Math. Univ. Carol. 31, 357–366 (1990)

    MATH  Google Scholar 

  21. Oliveira, P.E., Suquet, C.: An invariance principle in L 2[0,1] for non stationary φ-mixing sequences. Comment. Math. Univ. Carol. 36, 293–302 (1995)

    MATH  MathSciNet  Google Scholar 

  22. Oliveira, P.E., Suquet, C.: L 2[0,1] weak convergence of the empirical process for dependent variables. In: Antoniadis, A., Oppenheim, G. (eds.) Actes des XVèmes Rencontres Franco-Belges de Statisticiens (Ondelettes et Statistique). Lecture Notes in Statistics, vol. 103, pp. 331–344. Springer, New York (1995)

    Google Scholar 

  23. Oliveira, P.E., Suquet, C.: An L 2[0,1] invariance principle for LPQD random variables. Port. Math. 53, 367–379 (1996)

    MATH  MathSciNet  Google Scholar 

  24. Oliveira, P.E., Suquet, C.: Weak convergence in L p(0,1) of the uniform empirical process under dependence. Stat. Probab. Lett. 39, 363–370 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Parthasarathy, K.: Probability Measures on Metric Spaces. Academic Press, San Diego (1967)

    MATH  Google Scholar 

  26. Pisier, G.: Some applications of the metric entropy condition to harmonic analysis. In: Banach Spaces, Harmonic Analysis and Probability Theory. Lecture Notes in Mathematics, vol. 995, pp. 123–154. Springer, New York (1983)

    Chapter  Google Scholar 

  27. Prokhorov, Y.V.: Convergence of random processes and limit theorems in probability theory. Theory Probab. Appl. 1, 157–214 (1956)

    Article  Google Scholar 

  28. Shao, Q.M., Yu, H.: Weak convergence for weighted empirical processes of dependent sequences. Ann. Probab. 24, 2098–2127 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shepp, L.: On the integral of the absolute value of the pinned Wiener process. Ann. Probab. 10, 234–239 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  30. Stroock, D.: A Concise Introduction to the Theory of Integration. Birkhäuser, Basel (1994)

    MATH  Google Scholar 

  31. Suquet, C.: Relecture des critères de realtive compacité d’une famille de probabilités sur un espace de Hilbert. Technical report, Publ. IRMA, Lille 28-III (1992)

    Google Scholar 

  32. Suquet, C.: Tightness in Schauder decomposable Banach spaces. In: Proc. St. Petersburg Mathematical Soc. American Mathematical Society Translations, Series 2, vol. 193 (1999)

    Google Scholar 

  33. Vakhania, V.V., Tarieladze, V.I., Chobanyan, S.A.: Probability Distributions on Banach Spaces. Reidel, Dordrecht (1987)

    MATH  Google Scholar 

  34. Watson, G.: Goodness-of-fit tests on a circle. Biometrika 48, 109–114 (1981)

    Google Scholar 

  35. Yu, H.: A Glivenko–Cantelli lemma and weak convergence for empirical processes of associated sequences. Probab. Theory Relat. Fields 95, 357–370 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oliveira, P.E. (2012). Convergence in Distribution—Functional Results. In: Asymptotics for Associated Random Variables. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25532-8_5

Download citation

Publish with us

Policies and ethics