Skip to main content
  • 975 Accesses

Abstract

This chapter addresses central limit theorems, invariance principles and then proceeds to the convergence of empirical processes. The pathway will be to start with versions based on stationary variables and drop this assumption introducing the necessary control on the covariance structure. The techniques will be based on approximations of independent variables relying on a few inequalities established in Chap. 2. Once we have proved the first results, we will find characterizations of convergence rates with respect to the usual supnorm metric between distribution functions. A few applications to statistical estimation problems will be addressed in the final section of this chapter, as done in the previous one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azevedo, C., Oliveira, P.E.: Kernel-type estimation of bivariate distribution function for associated random variables. In: New Trends in Probability and Statistics, vol. 5. VSP, Utrecht (2000)

    Google Scholar 

  2. Bagai, I., Prakasa Rao, B.L.S.: Estimation of the survival function for stationary associated processes. Stat. Probab. Lett. 12, 385–391 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bensaïd, N., Fabre, J.P.: Estimation par noyau d’une derivée de Radon–Nikodym sous des conditions de mélange. Can. J. Stat. 28, 267–282 (1998)

    Article  Google Scholar 

  4. Bensaïd, N., Oliveira, P.E.: Histogram estimation of Radon–Nikodym derivatives for strong mixing data. Statistics 35, 569–592 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berkes, I.: The functional law of iterated logarithm for dependent random variables. Z. Wahrscheinlichkeitstheor. Verw. Geb. 26, 246–258 (1973)

    Article  MathSciNet  Google Scholar 

  6. Birkel, T.: The invariance principle for associated processes. Stoch. Process. Appl. 27, 57–71 (1988)

    Article  MathSciNet  Google Scholar 

  7. Birkel, T.: On the convergence rate in the central limit theorem for associated processes. Ann. Probab. 16, 1685–1698 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cai, Z., Roussas, G.G.: Efficient estimation of a distribution function under quadrant dependence. Scand. J. Stat. 25, 211–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cox, J., Grimmett, G.: Central limit theorems for associated random variables and the percolation model. Ann. Probab. 12, 514–528 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dabrowski, A.: A functional law of iterated logarithm for associated sequences. Stat. Probab. Lett. 3, 209–212 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dabrowski, A., Dehling, H.: A Berry–Esséen theorem and a functional law of the iterated logarithm for weakly associated random variables. Stoch. Process. Appl. 30, 277–289 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ferrieux, D.: Estimation de densités de mesures moyennes de processus ponctuels associées. Ph.D. thesis, Université de Montpellier, France (1996) (in French)

    Google Scholar 

  13. Ferrieux, D.: Estimation à noyau de densités moyennes de mesures aléatoires associées. C. R. Acad. Sci., Sér. 1 Math. 326, 1131–1134 (1998) (in French)

    MATH  MathSciNet  Google Scholar 

  14. Henriques, C., Oliveira, P.E.: Estimation of a two-dimensional distribution function under association. J. Stat. Plan. Inference 113, 137–150 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jacob, P., Oliveira, P.E.: A general approach to non-parametric histogram estimation. Statistics 27, 73–92 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jacob, P., Oliveira, P.E.: Kernel estimators of general Radon–Nikodym derivatives. Statistics 30, 25–46 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jacob, P., Oliveira, P.E.: Histograms and associated point processes. Stat. Inference Stoch. Process. 2, 227–251 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, Y.-X., Wang, J.-F.: The law of iterated logarithm for positively dependent random variables. J. Math. Anal. Appl. 339, 259–265 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Newman, C.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys. 74, 119–128 (1980)

    Article  MATH  Google Scholar 

  20. Newman, C., Wright, A.: An invariance principle for certain dependent sequences. Ann. Probab. 9, 671–675 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  21. Newman, C., Wright, A.: Associated random variables and martingale inequalities. Z. Wahrscheinlichkeitstheor. Verw. Geb. 59, 361–371 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  22. Oliveira, P.E.: Density estimation for associated sampling: a point process influenced approach. J. Nonparametr. Stat. 14, 495–509 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Roussas, G.G.: Kernel estimates under association: strong uniform consistency. Stat. Probab. Lett. 12, 215–224 (1991)

    Article  MathSciNet  Google Scholar 

  24. Roussas, G.G.: Curve estimation in random fields of associated processes. J. Nonparametr. Stat. 3, 215–224 (1993)

    Article  MathSciNet  Google Scholar 

  25. Roussas, G.G.: Asymptotic normality of a smooth estimate of a random field distribution function under association. Stat. Probab. Lett. 24, 77–90 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Roussas, G.G.: Asymptotic normality of the kernel estimate of a probability density function under association. Stat. Probab. Lett. 50, 1–12 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Roussas, G.G.: An Esséen-type inequality for probability density functions, with an application. Stat. Probab. Lett. 51, 397–408 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Roussas, G.G.: Erratum to “An Esséen-type inequality for probability density functions, with an application”. Stat. Probab. Lett. 54, 449 (2001)

    Article  MathSciNet  Google Scholar 

  29. Utev, S.A.: On the central limit theorem for φ-mixing arrays of random variables. Theory Probab. Appl. 35, 131–139 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wood, T.: A Berry–Esséen theorem for associated random variables. Ann. Probab. 11, 1042–1047 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yu, H.: The law of the iterated logarithm for associated random variables. Acta Math. Sin. 29, 507–511 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oliveira, P.E. (2012). Convergence in Distribution. In: Asymptotics for Associated Random Variables. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25532-8_4

Download citation

Publish with us

Policies and ethics