Skip to main content

Anhang

  • Chapter
  • First Online:
Angewandte Meteorologie
  • 5936 Accesses

Zusammenfassung

Im Anhang wird auf weiterführende Literatur verwiesen, es werden wichtige Konstanten angegeben sowie ein Überblick zu universellen Funktionen für den Impuls- und Wärmetransport, die Energiedissipation und den Temperaturstrukturfunktionsparameter gegeben. Komplettiert wird dies durch eine Liste von Experimenten über homogener, inhomogener und urbanen Unterlagen und eine Zusammenstellung verfügbarer Software für Eddy-Kovarianz-Messungen. Der Anhang enthält weiterhin ein Glossar und eine Liste englischer Fachbegriffe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • André J-C, Bougeault P, Goutorbe J-P (1990) Regional estimates of heat and evaporation fluxes over non-homogeneous terrain. Examples from the HAPEX-MOBILHY programme. Bound Lay Meteorol 50:77–108

    Article  Google Scholar 

  • Andreas EL (1988) Estimating Cn 2 over snow and sea ice from meteorological data. J Opt Soc Am A 5:481–495

    Article  Google Scholar 

  • Andreas EL (2002) Parametrizing scalar transfer over snow and ice: a review. J Hydrometeorol 3:417–432

    Article  Google Scholar 

  • Beljaars ACM, Holtslag AAM (1991) Flux parametrization over land surfaces for atmospheric models. J Appl Meteorol 30:327–341

    Article  Google Scholar 

  • Beljaars ACM, Schotanus P, Nieuwstadt FTM (1983) Surface layer similarity under nonuniform fetch conditions. J Clim Appl Meteorol 22:1800–1810

    Article  Google Scholar 

  • Beyrich F, Mengelkamp H-T (2006) Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment – an overview. Bound Lay Meteorol 121:5–32

    Article  Google Scholar 

  • Beyrich F, Herzog H-J, Neisser J (2002) The LITFASS project of DWD and the LITFASS-98 Experiment: the project strategy and the experimental setup. Theor Appl Climatol 73:3–18

    Article  Google Scholar 

  • Bolle H-J et al (1993) EFEDA: European field experiment in a desertification-threatened area. Ann Geophys 11:173–189

    Google Scholar 

  • Braam M, Moene A, Beyrich F, Holtslag AM (2014) Similarity relations for CT 2 in the unstable atmospheric surface layer: dependence on regression approach, observation height and stability range. Bound Lay Meteorol 153:63–87

    Article  Google Scholar 

  • Brockhaus (2003) Der Brockhaus Naturwissenschaft und Technik. Bibliographisches Institut & F.A Brockhaus AG, Spektrum Akademischer Verlag GmbH, Mannheim/Heidelberg

    Google Scholar 

  • Burba G, McDermitt DK, Grelle A, Anderson DJ, Xu L (2008) Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers. Global Change Biology. 14:1854–1876.

    Article  Google Scholar 

  • Businger JA, Miyake M, Inoue E, Mitsuta Y, Hanafusa T (1969) Sonic anemometer comparison and measurements in the atmospheric surface layer. J Meteorol Soc Jpn 47:1–12

    Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Caughey SL, Readings CJ (1975) Turbulent fluctuations in convective conditions. Q J Roy Meteorol Soc 101:537–542

    Article  Google Scholar 

  • Cohen ER, Taylor BN (1986) The 1986 adjustment of the fundamental physical constants. International Council of Scientific Unions (ICSU), Committee on Data for Science and Technology (CODATA). CODATA-Bull no 63:36 S

    Google Scholar 

  • Dyer AJ (1974) A review of flux-profile-relationships. Bound Lay Meteorol 7:363–372

    Article  Google Scholar 

  • Dyer AJ, Bradley EF (1982) An alternative analysis of flux-gradient relationships at the 1976 ITCE. Bound Lay Meteorol 22:3–19

    Article  Google Scholar 

  • Dyer AJ, Hicks BB (1970) Flux-gradient relationships in the constant flux layer. Q J Roy Meteorol Soc 96:715–721

    Article  Google Scholar 

  • Dyer AJ et al (1982) An international turbulence comparison experiment (ITCE 1976). Bound Lay Meteorol 24:181–209

    Article  Google Scholar 

  • Eugster W, Senn W (1995) A cospectral correction for measurement of turbulent NO2 flux. Boundary-Layer Meteorol. 74:321–340.

    Article  Google Scholar 

  • Fernando HJS et al (2015) The MATERHORN: Unraveling the intricacies of mountain weather. Bull Amer Meteorol Soc. 96:1945–1967.

    Article  Google Scholar 

  • Fischer G (Hrsg.) (1988) Landolt-Börnstein: numerical data and functional relationships in science and technology, group V: geophysics and space research, volume 4: meteorology, subvolume b: physical and chemical properties of the air. Springer, Berlin/Heidelberg

    Google Scholar 

  • Foken T (1990) Turbulenter Energieaustausch zwischen Atmosphäre und Unterlage – Methoden, meßtechnische Realisierung sowie ihre Grenzen und Anwendungsmöglichkeiten. Ber Dt Wetterdienstes 180:287 S

    Google Scholar 

  • Foken T (1996) Turbulenzexperiment zur Untersuchung stabiler Schichtungen. Ber Polarforschung 188:74–78

    Google Scholar 

  • Foken T (1998) Ergebnisse des LINEX-97/1 Experimentes. Dt Wetterdienst, Forsch. Entwicklung, Arbeitsergebnisse 53:38 S

    Google Scholar 

  • Foken T (2006) 50 years of the Monin-Obukhov similarity theory. Bound Lay Meteorol 119:431–447

    Article  Google Scholar 

  • Foken T, Skeib G (1983) Profile measurements in the atmospheric near-surface layer and the use of suitable universal functions for the determination of the turbulent energy exchange. Bound Lay Meteorol 25:55–62

    Article  Google Scholar 

  • Foken T, Skeib G, Richter SH (1991) Dependence of the integral turbulence characteristics on the stability of stratification and their use for Doppler-Sodar measurements. Z Meteorol 41:311–315

    Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agrical Forest Meteorol. 78:83–105.

    Article  Google Scholar 

  • Foken T, Jegede OO, Weisensee U, Richter SH, Handorf D, Görsdorf U, Vogel G, Schubert U, Kirzel H-J, Thiermann V (1997) Results of the LINEX-96/2 Experiment. Dt Wetterdienst, Forsch. Entwicklung, Arbeitsergebnisse 48:75 S

    Google Scholar 

  • Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post-field data quality control. In: Lee X et al (Hrsg) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, S 181–208

    Google Scholar 

  • Foken T, Leuning R, Oncley SP, Mauder M, Aubinet M (2012a) Corrections and data quality. In: Aubinet M et al (Hrsg) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht/Heidelberg/London/New York, S 85–131

    Chapter  Google Scholar 

  • Foken T et al (2012b) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site – results of the EGER experiment. Atmos Chem Phys 12:1923–1950

    Article  Google Scholar 

  • Frenzen P, Vogel CA (2001) Further studies of atmospheric turbulence in layers near the surface: scaling the TKE budget above the roughness sublayer. Bound Lay Meteorol 99:173–458

    Article  Google Scholar 

  • Garratt JR (1980) Surface influence upon vertical profiles in the atmospheric near surface layer. Q?J Roy Meteorol Soc 106:803–819

    Google Scholar 

  • Garratt JR, Hicks BB (1990) Micrometeorological and PBL experiments in Australia. Bound Lay Meteorol 50:11–32

    Article  Google Scholar 

  • Gavrilov AS, Petrov JS (1981) Ocenka totschnosti opredelenija turbulentnych potokov po standartnym gidrometeorologitscheskim izmerenijam nad morem. Meteorol Gidrol 52–59

    Google Scholar 

  • Goldbach A, Kuttler W (2013) Quantification of turbulent heat fluxes for adaptation strategies within urban planning. Int J Climatol 33:143–159

    Article  Google Scholar 

  • Goutorbe JP, Lebel T, Tinga A, Bessemoulin P, Brouwer J, Dolman H, Engman ET, Gash JGC, Hoepffner M, Kabat P, Kerr YH, Monteny B, Prince SD, Said F, Sellers P, Wallace J (1994) HAPEX-SAHEL: a large scale study of land atmosphere interactions in the semi-arid tropics. Ann Geophys 12:53–64

    Article  Google Scholar 

  • Grimmond CSB (2006) Progress in measuring and observing the urban atmosphere. Theor Appl Climatol 84:3–22

    Article  Google Scholar 

  • Grimmond CSB, King TS, Cropley FD, Nowak DJ, Souch C (2002) Local-scale fluxes of carbon dioxide in urban environments: methodological challenges and results from Chicago. Environ Pollut 1(Suppl 1):243–254

    Article  Google Scholar 

  • Grimmond CSB, Salmond JA, Oke TR, Offerle B, Lemonsu A (2004) Flux and turbulence measurements at a densely built-up site in Marseille: heat, mass (water and carbon dioxide), and momentum. J Geophys Res Atmos 109:D24101

    Article  Google Scholar 

  • Handorf D, Foken T, Kottmeier C (1999) The stable atmospheric boundary layer over an Antarctic ice sheet. Bound Lay Meteorol 91:165–186

    Article  Google Scholar 

  • Hantel M (2013) Einführung Theoretische Meteorologie. Springer Spektrum, Berlin/Heidelberg

    Book  Google Scholar 

  • Hartmann DL (1994) Global physical climatology. Academic, San Diego/New York

    Google Scholar 

  • Hartogensis OK, DeBruin HAR (2005) Monin–Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation in the stable boundary layer. Bound Lay Meteorol 116:253–276

    Google Scholar 

  • Hess GD, Hicks BB, Yamada T (1981) The impact of the Wangara experiment. Bound Lay Meteorol 20:135–174

    Article  Google Scholar 

  • Hicks BB (1981) An examination of the turbulence statistics in the surface boundary layer. Bound Lay Meteorol 21:389–402

    Article  Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Bound Lay Meteorol 42:55–78

    Article  Google Scholar 

  • Högström U (1990) Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J Atmos Sci 47:1949–1972

    Article  Google Scholar 

  • Horst TW, Lenschow DH (2009) Attenuation of scalar fluxes measured with spatially-displaced sensors. Bound Lay Meteorol 130:275–300

    Article  Google Scholar 

  • Horst TW, Kleissl J, Lenschow DH, Meneveau C, Moeng CH, Parlange MB, Sullivan PP, Weil JC (2004) HATS: field observations to obtain spatially filtered turbulence fields from crosswind arrays of sonic anemometers in the atmospheric surface layer. J Atmos Sci 61:1566–1581

    Article  Google Scholar 

  • Hsieh C-I, Katul G, Chi T-W (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–772

    Article  Google Scholar 

  • Hughes DW, Yallop BD, Hohenkerk CY (1989) The equation of time. Mon Not R Astron Soc 238:1529–1535

    Article  Google Scholar 

  • Ibrom A, Dellwik E, Larsen SE, Pilegaard K (2007) On the use of the Webb-Pearman-Leuning theory for closed-path eddy correlation measurements. Tellus B 59:937–946

    Article  Google Scholar 

  • Izumi Y (1971) Kansas 1968 field program data report. Air force cambridge research laboratory, Bedford. Air force cambridge research papers, no 379, 79 S

    Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: Their structure and measurement. Oxford University Press, New York

    Google Scholar 

  • King JC, Anderson PS, Smith MC, Mobbs SD (1996) The surface energy and mass balance at Halley, Antarctica during winter. J Geophys Res 101(D14):19119–19128

    Article  Google Scholar 

  • Klein P, Clark JV (2007) Flow variability in a North American downtown street canyon. J Appl Meteorol Climatol 46:851–877

    Article  Google Scholar 

  • Kljun N, Calanca P, Rotach M, Schmid HP (2004) A simple parameterization for flux footprint predictions. Bound Lay Meteorol 112:503–523

    Article  Google Scholar 

  • Kopp G, Lean JL (2011) A new, lower value of total solar irradiance: evidence and climate significance. Geophys Res Lett 38: L01706

    Article  Google Scholar 

  • Kormann R, Meixner FX (2001) An analytical footprint model for non-neutral stratification. Bound Lay Meteorol 99:207–224

    Article  Google Scholar 

  • Kotthaus S, Grimmond CSB (2012) Identification of micro-scale anthropogenic CO2, heat and moisture sources – processing eddy covariance fluxes for a dense urban environment. Atmos Environ 57:301–316

    Article  Google Scholar 

  • Lettau HH, Davidson B (Hrsg) (1957) Exploring the atmosphere’s first mile. Pergamon Press, London/New York

    Google Scholar 

  • Leuning R, King KM (1992) Comparison of eddy-covariance measurements of CO2 fluxes by open- and closed-path CO2 analysers. Bound Lay Meteorol 59:297–311

    Article  Google Scholar 

  • Li D, Bou-Zeid E, De Bruin HR (2012) Monin-Obukhov similarity functions for the structure parameters of temperature and humidity. Bound Lay Meteorol 145:45–67

    Article  Google Scholar 

  • Liou KN (1992) Radiation and cloud processes in the atmosphere. Oxford University Press, Oxford

    Google Scholar 

  • Liu H, Peters G, Foken T (2001) New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Boundary-Layer Meteorol. 100:459–468.

    Article  Google Scholar 

  • Lothon M et al (2014) The BLLAST field experiment: boundary-layer late afternoon and sunset turbulence. Atmos Chem Phys 14:10931–10960

    Article  Google Scholar 

  • Lumley JL, Panofsky HA (1964) The structure of atmospheric turbulence. Interscience Publishers, New York

    Google Scholar 

  • Maronga B (2013) Monin-Obukhov similarity functions for the structure parameters of temperature and humidity in the unstable surface layer: Results from high-resolution large-eddy simulations. J Atmos Sci 71:716–733

    Article  Google Scholar 

  • Mauder M, Foken T, Clement R, Elbers J, Eugster W, Grünwald T, Heusinkveld B, Kolle O (2008) Quality control of CarboEurope flux data – Part 2: Inter-comparison of eddy-covariance software. Biogeosciences 5:451–462

    Article  Google Scholar 

  • McBean GA (1971) The variation of the statistics of wind, temperature and humidity fluctuations with stability. Bound Lay Meteorol 1:438–457

    Article  Google Scholar 

  • McBean GA, Bernhardt K, Bodin S, Litynska Z, van Ulden AP, Wyngaard JC (1979) The planetary boundary layer. WMO, note 530:201 S

    Google Scholar 

  • Mengelkamp H-T et al (2006) Evaporation over a heterogeneous land surface: The EVA_GRIPS project. Bull Am Meteorol Soc 87:775–786

    Article  Google Scholar 

  • Miyake M, Stewart RW, Burling RW, Tsvang LR, Kaprov BM, Kuznecov OA (1971) Comparison of acoustic instruments in an atmospheric flow over water. Bound Lay Meteorol 2:228–245

    Article  Google Scholar 

  • Moncrieff JB, Massheder JM, DeBruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Søgaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapor and carbon dioxide. J Hydrol. 188–189:589–611.

    Article  Google Scholar 

  • Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol. 37:17–35.

    Article  Google Scholar 

  • Nakai T, Shimoyama K (2012) Ultrasonic anemometer angle of attack errors under turbulent conditions. Agr Forest Meteorol 162–163:14–26

    Article  Google Scholar 

  • Nakai T, van der Molen MK, Gash JHC, Kodama Y (2006) Correction of sonic anemometer angle of attack errors. Agr Forest Meteorol 136:19–30

    Article  Google Scholar 

  • Nemitz E, Hargreaves KJ, McDonald AG, Dorsey JR, Fowler D (2002) Micrometeorological measurements of the urban heat budget and CO2 emissions on a city scale. Environ Sci Technol 36:3139–3146

    Article  Google Scholar 

  • Ohmura A, Steffen K, Blatter H, Greuell W, Rotach M, Stober M, Konzelmann T, Forrer J, Abe-Ouchi A, Steiger D, Neiderbäumer G (1992) Greenland expedition, progress report no 2, April 1991 to Oktober 1992. Swiss federal institute of techology, Zürich

    Google Scholar 

  • Oncley SP, Foken T, Vogt R, Kohsiek W, DeBruin HAR, Bernhofer C, Christen A, van Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L, Weidinger T (2007) The energy balance experiment EBEX-2000. Part I: Overview and energy balance. Bound Lay Meteorol 123:1–28

    Article  Google Scholar 

  • Panofsky HA, Dutton JA (1984) Atmospheric turbulence – models and methods for engineering applications. Wiley, New York

    Google Scholar 

  • Panofsky HA, Tennekes H, Lenschow DH, Wyngaard JC (1977) The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound Lay Meteorol 11:355–361

    Article  Google Scholar 

  • Patton EG et al (2011) The canopy horizontal array turbulence study. Bull Am Meteorol Soc 92:593–611

    Article  Google Scholar 

  • Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta R, Newsom R, Cuxart J, Terradellas E, Balsley B, Jensen M (2002) CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83:55–581

    Article  Google Scholar 

  • Rotach M et al (2005) BUBBLE – an urban boundary layer meteorology project. Theor Appl Climatol 81:231–261

    Article  Google Scholar 

  • Salmond JA, Oke TR, Grimmond CSB, Roberts S, Offerle B (2005) Venting of heat and carbon dioxide from urban canyons at night. J Appl Meteorol 44:1180–1194

    Article  Google Scholar 

  • Schotanus P, Nieuwstadt FTM, DeBruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Boundary-Layer Meteorol. 26:81–93.

    Article  Google Scholar 

  • Schuepp PH, Leclerc MY, MacPherson JI, Desjardins RL (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound Lay Meteorol 50:355–373

    Article  Google Scholar 

  • Seiler W (1996) Results from the integrated research programme SANA, phase I. Meteorol Z 5:179–278

    Google Scholar 

  • Sellers PJ, Hall FG, Asrar G, Strebel DE, Murphy RE (1988) The first ISLSCP field experiment (FIFE). Bull Am Meteorol Soc 69:22–27

    Article  Google Scholar 

  • Sellers PJ et al (1997) BOREAS in 1997: Experiment overview, scientific results, and future directions. J Geophys Res 102:28731–28769

    Article  Google Scholar 

  • Skeib G (1980) Zur Definition universeller Funktionen für die Gradienten von Windgeschwindigkeit und Temperatur in der bodennahen Luftschicht. Z Meteorol 30:23–32

    Google Scholar 

  • Soegaard H, Møller-Jensen L (2003) Towards a spatial CO2 budget of a metropolitan region based on textural image classification and flux measurements. Remote Sens Environ 87:283–294

    Article  Google Scholar 

  • Sonntag D (1989) Formeln verschiedenen Genauigkeitsgrades zur Berechnung der Sonnenkoordinaten. Abh Meteorol Dienstes DDR 143:104

    Google Scholar 

  • Sonntag D (1990) Important new values of the physical constants of 1986, vapour pressure formulations based on the ITC-90, and psychrometer formulae. Z Meteorol 40:340–344

    Google Scholar 

  • Sorbjan Z (1986) Characteristics in the stable-continuous boundary layer. Bound Lay Meteorol 35:257–275

    Article  Google Scholar 

  • Sorbjan Z (1987) An examination of local similarity theory in the stably stratified boundary layer. Bound Lay Meteorol 38:63–71

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht/Boston/London

    Book  Google Scholar 

  • Swinbank WC (1964) The exponential wind profile. Q J Roy Meteorol Soc 90:119–135

    Article  Google Scholar 

  • Swinbank WC (1968) A comparison between prediction of the dimensional analysis for the constant-flux layer and observations in unstable conditions. Q J Roy Meteorol Soc 94:460–467

    Article  Google Scholar 

  • Swinbank WC, Dyer AJ (1968) An experimental study on mircrometeorology. Q J Roy Meteorol Soc 93:494–500

    Article  Google Scholar 

  • Tanner BD, Swiatek E, Greene JP (1993) Density fluctuations and use of the krypton hygrometer in surface flux measurements. In: Allen RG (Hrsg) Management of Irrigation and Drainage Systems: Integrated Perspectives. American Society of Civil Engineers, New York, NY, 945–952

    Google Scholar 

  • Thiermann V, Grassl H (1992) The measurement of turbulent surface layer fluxes by use of bichromatic scintillation. Bound Lay Meteorol 58:367–391

    Article  Google Scholar 

  • Thomas C, Foken T (2002) Re-evaluation of integral turbulence characteristics and their parameterisations. In: 15th conference on turbulence and boundary layers, Wageningen, 15–19 July 2002, American Meteorological Society, 129–132

    Google Scholar 

  • Thomas C, Foken T (2007) Organised motion in a tall spruce canopy: Temporal scales, structure spacing and terrain effects. Bound Lay Meteorol 122:123–147

    Article  Google Scholar 

  • Tschalikov DV (1968) O profilja vetra i temperatury v prizemnom sloe atmosfery pri ustojtschivoj stratifikacii (About the wind and temperature profile in the surface layer for stable stratification). Trudy GGO 207:170–173

    Google Scholar 

  • Tsvang LR, Kaprov BM, Zubkovskij SL, Dyer AJ, Hicks BB, Miyake M, Stewart RW, McDonald JW (1973) Comparison of turbulence measurements by different instuments; Tsimlyansk field experiment 1970. Bound Lay Meteorol 3:499–521

    Article  Google Scholar 

  • Tsvang LR, Zubkovskij SL, Kader BA, Kallistratova MA, Foken T, Gerstmann W, Przandka Z, Pretel J, Zelený J, Keder J (1985) International turbulence comparison experiment (ITCE-81). Bound Lay Meteorol 31:325–348

    Article  Google Scholar 

  • Tsvang LR, Fedorov MM, Kader BA, Zubkovskii SL, Foken T, Richter SH, Zelený J (1991) Turbulent exchange over a surface with chessboard-type inhomogeneities. Bound Lay Meteorol 55:141–160

    Article  Google Scholar 

  • Uttal T et al (2002) Surface heat budget of the Arctic Ocean. Bull Am Meteorol Soc 83:255–275

    Article  Google Scholar 

  • van Dijk A, Kohsiek W, DeBruin HAR (2003) Oxygen sensitivity of krypton and Lyman-alpha hygrometers. J Atm Oceanic Techn. 20:143–151.

    Article  Google Scholar 

  • van Dijk A, Kohsiek W, DeBruin HAR (2004) The principles of surface flux physics: theory, practice and description of the ECPACK library. University of Wageningen, Wageningen

    Google Scholar 

  • van Ulden AP, Holtslag AAM (1985) Estimation of atmospheric boundary layer parameters for diffusion applications. J Clim Appl Meteorol 24:1196–1207

    Article  Google Scholar 

  • VDI (2006) Umweltmeteorologie – Meteorologische Messungen – Messstation, VDI 3786, Blatt 13. Beuth Verlag, Berlin

    Google Scholar 

  • VDI (2015) Umweltmeteorologie: Wechselwirkungen zwischen Atmosphäre und Oberflächen, Berechnung der spektralen kurz- und der langwelligen Strahlung, VDI 3789 (Entwurf). Beuth Verlag, Berlin

    Google Scholar 

  • Vesala T, Järvi L, Launiainen S, Sogachev A, Rannik Ü, Mammarella I, Siivola E, Keronen P, Rinne J, Riikonen ANU, Nikinmaa E (2008) Surface-atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus B 60:188–199

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atm Oceanic Techn. 14:512–526.

    Article  Google Scholar 

  • Vogt R, Christen A, Rotach MW, Roth M, Satyanarayana ANV (2006) Temporal dynamics of CO2 fluxes and profiles over a Central European city. Theor Appl Climatol 84:117–126

    Article  Google Scholar 

  • Webb EK (1970) Profile relationships: The log-linear range, and extension to strong stability. Q J Roy Meteorol Soc 96:67–90

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of the flux measurements for density effects due to heat and water vapour transfer. Quart J Roy Meteorol Soc. 106:85–100.

    Article  Google Scholar 

  • Wulfmeyer V et al (2011) The convective and orographically induced precipitation study (COPS): the scientific strategy, the field phase, and research highlights. Q J Roy Meteorol Soc 137:3–30

    Article  Google Scholar 

  • Wyngaard JC (1973) On surface layer turbulence. In: Haugen DH (Hrsg) Workshop on micrometeorology. American Meteorological Society, Boston, S 101–149

    Google Scholar 

  • Wyngaard JC, Coté OR (1971) The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J Atmos Sci 28:190–201

    Article  Google Scholar 

  • Wyngaard JC, Izumi Y, Collins SA (1971) Behavior of the refractive-index-structure parameter near the ground. J Opt Soc Am 61:1646–1650

    Article  Google Scholar 

  • Yaglom AM (1977) Comments on wind and temperature flux-profile relationships. Bound Lay Meteorol 11:89–102

    Article  Google Scholar 

  • Zilitinkevich SS, Tschalikov DV (1968) Opredelenie universalnych profilej skorosti vetra i temperatury v prizemnom sloe atmosfery (Determination of universal profiles of wind velocity and temperature in the surface layer of the atmosphere). Izv AN SSSR, Fiz Atm Okeana 4:294–302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Foken .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Foken, T. (2016). Anhang. In: Angewandte Meteorologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25525-0_9

Download citation

Publish with us

Policies and ethics