Skip to main content

Allgemeine Grundlagen

  • Chapter
  • First Online:
Book cover Angewandte Meteorologie
  • 6138 Accesses

Zusammenfassung

Dieser einleitende Abschnitt soll den Rahmen für das vorliegende Buch abstecken, indem Begriffe wie Mikrometeorologie, atmosphärische Grenzschicht und meteorologische Maßstäbe definiert werden und Bezug genommen wird auf die Inhalte des Buches. Neben einem kurzen historischen Abriss werden dann die Bilanzgleichungen an der Erdoberfläche dargestellt und die verschiedenen Transportprozesse eingehend erläutert. Damit sind die mikrometeorologischen Grundlagen gegeben, um in den folgenden Kapiteln theoretische und experimentelle Fragestellungen vertiefen zu können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Albrecht F (1940) Untersuchungen über den Wärmehaushalt der Erdoberfläche in verschiedenen Klimagebieten. Reichsamt Wetterdienst, Wiss Abh VIII(2):1–82

    Google Scholar 

  • André J-C, Bougeault P, Goutorbe J-P (1990) Regional estimates of heat and evaporation fluxes over non-homogeneous terrain, Examples from the HAPEX-MOBILHY programme. Bound-Lay Meteorol 50:77–108

    Article  Google Scholar 

  • Arya SP (2001) Introduction to micrometeorology. Academic Press, San Diego

    Google Scholar 

  • Barkov E (1914) Vorläufiger Bericht über die meteorologischen Beobachtungen der Deutschen Antarktisexpedition 1911–1912. Meteorol Z 49:120–126

    Google Scholar 

  • Barrett EW, Suomi VE (1949) Preliminary report on temperature measurement by sonic means. J Meteorol 6:273–276

    Article  Google Scholar 

  • Baumgartner A, Reichel E (1975) The world water balance. Elsevier, Amsterdam/New York

    Google Scholar 

  • Beniston M (1998) From turbulence to climate. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Berényi D (1967) Mikroklimatologie, Mikroklima der bodennahen Atmosphäre. Akadémiai Kiadó, Budapest

    Google Scholar 

  • Bernhardt K (1984) Physik der Grundschicht. Abh Meteorol Dienstes DDR 133:43–82

    Google Scholar 

  • Beyer R, Roth R (1977) GREIV I, 1974, Meßdaten. Ber Inst Meteorol Klimatol Univ Hannover. 16:IV + 532

    Google Scholar 

  • Beyrich F, Foken T (2005) Untersuchung von Landoberflächen- und Grenzschichtprozessen am Meteorologischen Observatorium Lindenberg. Promet 31:148–158

    Google Scholar 

  • Beyrich F, Mengelkamp H-T (2006) Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment – an overview. Bound-Lay Meteorol 121:5–32

    Article  Google Scholar 

  • Beyrich F, Richter SH, Weisensee U, Kohsiek W, Lohse H, DeBruin HAR, Foken T, Göckede M, Berger FH, Vogt R, Batchvarova E (2002) Experimental determination of turbulent fluxes over the heterogeneous LITFASS area: selected results from the LITFASS-98 experiment. Theor Appl Climat 73:19–34

    Article  Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena. Wiley, New York

    Google Scholar 

  • Blackadar AK (1976) Modeling the nocturnal boundary layer. 4th symposium on atmospheric turbulence, diffusion and air pollution, Raylaigh, 19–22 Oct 1976. (1976) Am Meteorol Soc 46–49

    Google Scholar 

  • Blöschl G, Sivapalan M (1995) Scale issues in hydrological modelling – a review. Hydrol Process 9:251–290

    Article  Google Scholar 

  • Börngen M, Foken T, Hupfer P (2004) 50 Jahre Grundschicht der Troposphäre. NTM 12:201–212

    Article  Google Scholar 

  • Bovscheverov VM, Voronov VP (1960) Akustitscheskii fljuger (Acoustic rotor). Izv AN SSSR, ser Geofiz 6:882–885

    Google Scholar 

  • Bradley EF (1968) A shearing stress meter for micrometeorological studies. Q J Roy Meteorol Soc 94:380–387

    Article  Google Scholar 

  • Brötz B, Eigenmann R, Dörnbrack A, Foken T, Wirth V (2014) Early-morning flow transition in a valley in low-mountain terrain. Bound-Lay Meteorol 152:45–63

    Article  Google Scholar 

  • Brutsaert W (2005) Hydrology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Budyko MI (1974) Climate and life. Academic Press, New York

    Google Scholar 

  • Burridge DM, Gadd AJ (1977) The Meteorological Office operational 10-level numerical weather prediction model (December 1975). Met Office Tech Notes 34:39

    Google Scholar 

  • Businger JA, Yaglom AM (1971) Introduction to Obukhov’s paper “Turbulence in an atmosphere with a non-uniform temperature”. Bound-Lay Meteorol 2:3–6

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Davidson PA, Kaneda Y, Moffatt K, Sreenivasan KR (Hrsg) (2011) A voyage through turbulence. Cambridge University Press, Cambridge

    Google Scholar 

  • Dyer AJ, Maher FJ (1965) Automatic eddy-flux measurement with the evapotron. J Appl Meteorol 4:622–625

    Article  Google Scholar 

  • Dyer AJ, Hicks BB, King KM (1967) The Fluxatron – a revised approach to the measurement of eddy fluxes in the lower atmosphere. J Appl Meteorol 6:408–413

    Article  Google Scholar 

  • Dyer AJ et al (1982) An international turbulence comparison experiment (ITCE 1976). Bound-Lay Meteorol 24:181–209

    Article  Google Scholar 

  • Etling D (2008) Theoretische Meteorologie. Springer, Berlin/Heidelberg

    Google Scholar 

  • Foken T (2006) 50 years of the Monin-Obukhov similarity theory. Bound-Lay Meteorol 119:431–447

    Article  Google Scholar 

  • Foken T (2013) Energieaustausch an der Erdoberfläche. Edition am Gutenbergplatz, Leipzig

    Google Scholar 

  • Foken T, Kitajgorodskij SA, Kuznecov OA (1978) On the dynamics of the molecular temperature boundary layer above the sea. Bound-Lay Meteorol 15:289–300

    Article  Google Scholar 

  • Foken T, Wichura B, Klemm O, Gerchau J, Winterhalter M, Weidinger T (2001) Micrometeorological conditions during the total solar eclipse of August 11, 1999. Meteorol Z 10:171–178

    Article  Google Scholar 

  • Foken T et al (2012) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site – results of the EGER experiment. Atmos Chem Phys 12:1923–1950

    Article  Google Scholar 

  • Frisch U (1995) Turbulence. Cambridge University Press, Cambridge

    Google Scholar 

  • Garratt JR (1978) Flux profile relations above tall vegetation. Q J Roy Meteorol Soc 104:199–211

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge

    Google Scholar 

  • Garratt JR, Hicks BB (1990) Micrometeorological and PBL experiments in Australia. Bound-Lay Meteorol 50:11–32

    Article  Google Scholar 

  • Geiger R (1927) Das Klima der bodennahen Luftschicht. Friedr. Vieweg & Sohn, Braunschweig

    Google Scholar 

  • Geiger R (2013) Das Klima der bodennahen Luftschicht. Springer, Wiesbaden

    Book  Google Scholar 

  • Geiger R, Aron RH, Todhunter P (2009) The climate near the ground. Rowman & Littlefield, Lanham

    Google Scholar 

  • Glickman TS (Hrsg) (2000) Glossary of meteorology. American Meteorological Society, Boston

    Google Scholar 

  • Hanafusa T, Fujitana T, Kobori Y, Mitsuta Y (1982) A new type sonic anemometer-thermometer for field operation. Pap Meteorol Geophys 33:1–19

    Article  Google Scholar 

  • Hann JF, Süring R (1939) Lehrbuch der Meteorologie. Verlag von Willibald Keller, Leipzig

    Google Scholar 

  • Hartmann DL (1994) Global physical climatology. Academic Press, San Diego/New York

    Google Scholar 

  • Haugen DA (Hrsg) (1973) Workshop on micrometeorology. American Meteorological Society, Boston

    Google Scholar 

  • Henderson-Sellers A, Robinson PJ (1986) Contemporary climatology. Wiley, New York

    Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Bound-Lay Meteorol 42:55–78

    Article  Google Scholar 

  • Högström U (1990) Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J Atmos Sci 47:1949–1972

    Article  Google Scholar 

  • Houghton DD (1985) Handbook of applied meteorology. Wiley, New York

    Google Scholar 

  • Houghton JT (2015) Global warming, the complete briefing. Cambridge University Press, Cambridge

    Google Scholar 

  • Hupfer P, Kuttler W (Hrsg) (2006) Witterung und Klima, begründet von Ernst Heyer. B. G. Teubner, Stuttgart/Leipzig

    Google Scholar 

  • Izumi Y (1971) Kansas 1968 field program data report, Air Force Cambridge Research Laboratory, Bedford. Air Force Cambridge Research Papers, No 379, S 79

    Google Scholar 

  • Jiang B, Zhang Y, Liang S, Wohlfahrt G, Arain A, Cescatti A, Georgiadis T, Jia K, Kiely G, Lund M, Montagnani L, Magliulo V, Ortiz PS, Oechel W, Vaccari FP, Yao Y, Zhang X (2015) Empirical estimation of daytime net radiation from shortwave radiation and ancillary information. Agr Forest Meteorol 211–212:23–36

    Article  Google Scholar 

  • Kaimal JC, Businger JA (1963) A continuous wave sonic anemometer-thermometer. J Clim Appl Meteorol 2:156–164

    Article  Google Scholar 

  • Kaimal JC, Wyngaard JC (1990) The Kansas and Minnesota experiments. Bound-Lay Meteorol 50:31–47

    Article  Google Scholar 

  • Kiehl J, Trenberth KE (1997) Earth annual global mean energy budget. Bull Am Meteorol Soc 78:197–208

    Article  Google Scholar 

  • Kleinschmidt E (Hrsg) (1935) Handbuch der meteorologischen Instrumente und ihrer Auswertung. Springer, Berlin

    Google Scholar 

  • Kolmogorov AN (1941a) Lokalnaja struktura turbulentnosti v neschtschimaemoi sckhidkosti pri otschen bolschich tschislach Reynoldsa (The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers). Dokl AN SSSR 30:299–303

    Google Scholar 

  • Kolmogorov AN (1941b) Rassejanie energii pri lokolno-isotropoi turbulentnosti (Dissipation of energy in locally isotropic turbulence). Dokl AN SSSR 32:22–24

    Google Scholar 

  • Kopp G, Lean JL (2011) A new, lower value of total solar irradiance: evidence and climate significance. Geophys Res Lett 38, L01706

    Article  Google Scholar 

  • Korzun VI (Hrsg) (1978) World water balance and water resources of the earth. UNESCO, Paris

    Google Scholar 

  • Kraus H (2004) Die Atmosphäre der Erde. Springer, Berlin/Heidelberg

    Google Scholar 

  • Kraus H (2008) Grundlagen der Grenzschichtmeteorologie. Springer, Berlin/Heidelberg

    Google Scholar 

  • Lehmann A, Kalb M (1993) 100 Jahre meteorologische Beobachtungen an der Säkularstation Potsdam 1893–1992. Deutscher Wetterdienst, Offenbach

    Google Scholar 

  • Lettau H (1939) Atmosphärische Turbulenz. Akad. Verlagsges, Leipzig

    Google Scholar 

  • Lettau H (1949) Isotropic and non-isitropic turbulence in the atmospheric surface layer. Geophys Res Pap 1:86

    Google Scholar 

  • Lettau HH, Davidson B (Hrsg) (1957) Exploring the atmosphere’s first mile. Pergamon Press, London/New York

    Google Scholar 

  • Liebethal C, Foken T (2007) Evaluation of six parameterization approaches for the ground heat flux. Theor Appl Climatol 88:43–56

    Article  Google Scholar 

  • Liebethal C, Huwe B, Foken T (2005) Sensitivity analysis for two ground heat flux calculation approaches. Agr Forest Meteorol 132:253–262

    Article  Google Scholar 

  • Liou KN (1992) Radiation and cloud processes in the atmosphere. Oxford University Press, Oxford

    Google Scholar 

  • Lothon M et al (2014) The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos Chem Phys 14:10931–10960

    Article  Google Scholar 

  • Lumley JL, Yaglom AM (2001) A century of turbulence. Flow Turbul Combust 66:241–286

    Article  Google Scholar 

  • Mitsuta Y (1966) Sonic anemometer-thermometer for general use. J Meteor Soc Jpn Ser II 44:12–24

    Google Scholar 

  • Miyake M, Stewart RW, Burling RW, Tsvang LR, Kaprov BM, Kuznecov OA (1971) Comparison of acoustic instruments in an atmospheric flow over water. Bound-Lay Meteorol 2:228–245

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Osnovnye zakonomernosti turbulentnogo peremesivanija v prizemnom sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Trudy geofiz inst AN SSSR 24(151):163–187

    Google Scholar 

  • Monin AS, Yaglom AM (1973) Statistical fluid mechanics: mechanics of turbulence, Bd 1. MIT Press, Cambridge/London

    Google Scholar 

  • Monin AS, Yaglom AM (1975) Statistical fluid mechanics: mechanics of turbulence, Bd 2. MIT Press, Cambridge/London

    Google Scholar 

  • Montgomery RB (1948) Vertical eddy flux of heat in the atmosphere. J Meteorol 5:265–274

    Article  Google Scholar 

  • Obukhov AM (1946) Turbulentnost’ v temperaturnoj - neodnorodnoj atmosfere (Turbulence in an atmosphere with a non-uniform temperature). Trudy Inst Theor Geofiz AN SSSR 1:95–115

    Google Scholar 

  • Obukhov AM (1951) Charakteristiki mikrostruktury vetra v prizemnom sloje atmosfery (Characteristics of the micro-structure of the wind in the surface layer of the atmosphere). Izv AN SSSR, ser Geofiz 3:49–68

    Google Scholar 

  • Obukhov AM (1960) O strukture temperaturnogo polja i polja skorostej v uslovijach konvekcii (Structure of the temperature and velocity fields under conditions of free convection). Izv AN SSSR, ser Geofiz 9:1392–1396

    Google Scholar 

  • Obukhov AM (1971) Turbulence in an atmosphere with a non-uniform temperature. Bound-Lay Meteorol 2:7–29

    Article  Google Scholar 

  • Oertel jr H (Hrsg) (2012) Prandtl-Führer durch die Strömungslehre. Springer Fachmedien, Wiesbaden

    Google Scholar 

  • Oke TR (1987) Boundary layer climates. Methuen, New York

    Google Scholar 

  • Oncley SP, Foken T, Vogt R, Kohsiek W, DeBruin HAR, Bernhofer C, Christen A, van Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L, Weidinger T (2007) The energy balance experiment EBEX-2000, part I: Overview and energy balance. Bound-Lay Meteorol 123:1–28

    Article  Google Scholar 

  • Orlanski I (1975) A rational subdivision of scales for atmospheric processes. Bull Am Meteorol Soc 56:527–530

    Google Scholar 

  • Persson POG, Fairall CW, Andreas EL, Guest PS, Perovich DK (2002) Measurements near the atmospheric surface flux group tower at sheba: Near-surface conditions and surface energy budget. J Geophys Res 107:8045

    Article  Google Scholar 

  • Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta R, Newsom R, Cuxart J, Terradellas E, Balsley B, Jensen M (2002) CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83:55–581

    Article  Google Scholar 

  • Prandtl L (1925) Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z angew Math Mech 5:136–139

    Google Scholar 

  • Reynolds O (1894) On the dynamical theory of turbulent incompressible viscous fluids and the determination of the criterion. Philos Trans Roy Soc Lond A 186:123–161

    Article  Google Scholar 

  • Richardson LF (1920) The supply of energy from and to atmospheric eddies. Proc Roy Soc A 97:354–373

    Article  Google Scholar 

  • Roedel W, Wagner T (2011) Physik unserer Umwelt: Die Atmosphäre. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Schlichting H, Gersten K (2006) Grenzschicht-Theorie. Springer, Berlin/Heidelberg

    Google Scholar 

  • Schmidt W (1925) Der Massenaustausch in freier Luft und verwandte Erscheinungen. Henri Grand Verlag, Hamburg

    Google Scholar 

  • Schneider-Carius K (1953) Die Grundschicht der Troposphäre. Akad. Verlagsges. Geest & Portig, Leipzig

    Google Scholar 

  • Schoonmaker PK (1998) Paleoecological perspectives on ecological scales. In: Peterson DL, Parker VT (Hrsg) Ecological scale. Columbia University Press, New York, S 79–103

    Google Scholar 

  • Schotland RM (1955) The measurement of wind velocity by sonic waves. J Meteorol 12:386–390

    Article  Google Scholar 

  • Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34:1001–1027

    Article  Google Scholar 

  • Seiler W (1996) Results from the integrated research programme SANA. Phase I. Meteorol Z 5:179–278

    Google Scholar 

  • Sellers PJ, Hall FG, Asrar G, Strebel DE, Murphy RE (1988) The first ISLSCP field experiment (FIFE). Bull Am Meteorol Soc 69:22–27

    Article  Google Scholar 

  • Shen S, Leclerc MY (1995) How large must surface inhomogeneous be before they influence the convective boundary layer structure? A case study. Q J Roy Meteorol Soc 121:1209–1228

    Article  Google Scholar 

  • Sheppard PA (1947) The aerodynamic drag of the Earth’s surface and the value of von Karman’s constant in the lower atmosphere. Proc Roy Soc Lond A 188:208–222

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht/Boston/London

    Book  Google Scholar 

  • Stull RB (2011) Meteorology for scientists and engineers, 3rd edn. © Author, CC Attribution 4.0 License, Vancouver, ISBN-13: 978-0-88865-178-5

    Google Scholar 

  • Suomi VE (1957) Sonic anemometer – University of Wisconsin. In: Lettau HH, Davidson B (Hrsg) Exploring the atmosphere’s first mile, Bd 1. Pergamon Press, London/New York, S 256–266

    Google Scholar 

  • Sutton OG (1953) Micrometeorology. McGraw Hill, New York

    Google Scholar 

  • Swinbank WC (1951) The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J Meteorol 8:135–145

    Article  Google Scholar 

  • Taylor GI (1915) Eddy motion in the atmosphere. Philos Trans Roy Soc Lond A 215:1–26

    Article  Google Scholar 

  • Taylor GI (1938) The spectrum of turbulence. Proc Roy Soc Lond A 164:476–490

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90:311–323

    Article  Google Scholar 

  • Tsvang LR, Kaprov BM, Zubkovskij SL, Dyer AJ, Hicks BB, Miyake M, Stewart RW, McDonald JW (1973) Comparison of turbulence measurements by different instuments; Tsimlyansk field experiment 1970. Bound-Lay Meteorol 3:499–521

    Article  Google Scholar 

  • Tsvang LR, Zubkovskij SL, Kader BA, Kallistratova MA, Foken T, Gerstmann W, Przandka Z, Pretel J, Zelený J, Keder J (1985) International turbulence comparison experiment (ITCE-81). Bound-Lay Meteorol 31:325–348

    Article  Google Scholar 

  • Tsvang LR, Fedorov MM, Kader BA, Zubkovskii SL, Foken T, Richter SH, Zelený J (1991) Turbulent exchange over a surface with chessboard-type inhomogeneities. Bound-Lay Meteorol 55:141–160

    Article  Google Scholar 

  • Vogel H-J, Roth K (2003) Moving through scales of flow and transport in soil. J Hydrol 272:95–106

    Article  Google Scholar 

  • von Kármán T, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc R Soc Lond A 164:192–215

    Article  Google Scholar 

  • Wendisch M, Yang P (2012) Theory of atmospheric radiative transfer. Wiley, Weinheim

    Google Scholar 

  • Wendling U, Fuchs P, Müller-Westermeier G (1997) Modellierung des Zusammenhangs von Globalstrahlung, Sonnenscheindauer und Bewölkungsgrad als Beitrag der Klimaüberwachung. Dt Wetterdienst, Forsch. Entwicklung, Arbeitsergebnisse 45:29

    Google Scholar 

  • Wichura B, Buchmann N, Foken T, Mangold A, Heinz G, Rebmann C (2001) Pools und Flüsse des stabilen Kohlenstoffisotops 13C zwischen Boden, Vegetation und Atmosphäre in verschiedenen Pflanzengemeinschaften des Fichtelgebirges. Bayreuther Forum Ökologie 84:123–153

    Google Scholar 

  • Wieringa J (1980) A revaluation of the Kansas mast influence on measurements of stress and cup anemometer overspeeding. Bound-Lay Meteorol 18:411–430

    Article  Google Scholar 

  • Wild M, Folini D, Schär C, Loeb N, Dutton E, König-Langlo G (2013) The global energy balance from a surface perspective. Climate Dynam 40:3107–3134

    Article  Google Scholar 

  • Wild M, Folini D, Hakuba M, Schär C, Seneviratne S, Kato S, Rutan D, Ammann C, Wood E, König-Langlo G (2015) The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models. Climate Dynam 44:3393–3429

    Article  Google Scholar 

  • Wulfmeyer V et al (2011) The convective and orographically induced precipitation study (COPS): the scientific strategy, the field phase, and research highlights. Q J Roy Meteorol Soc 137:3–30

    Article  Google Scholar 

  • Wyngaard JC, Coté OR, Izumi Y (1971) Local free convection, similarity and the budgets of shear stree and heat flux. J Atmos Sci 28:1171–1182

    Article  Google Scholar 

  • Wyngaard JC, Businger JA, Kaimal JC, Larsen SE (1982) Comments on ‘a revaluation of the Kansas mast influence on measurements of stress and cup anemometer overspeeding’. Bound-Lay Meteorol 22:245–250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Foken .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Foken, T. (2016). Allgemeine Grundlagen. In: Angewandte Meteorologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25525-0_1

Download citation

Publish with us

Policies and ethics