Skip to main content

Fast Computation on Encrypted Polynomials and Applications

  • Conference paper
Cryptology and Network Security (CANS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7092))

Included in the following conference series:

Abstract

In this paper, we explore fast algorithms for computing on encrypted polynomials. More specifically, we describe efficient algorithms for computing the Discrete Fourier Transform, multiplication, division, and multipoint evaluation on encrypted polynomials. The encryption scheme we use needs to be additively homomorphic, with a plaintext domain that contains appropriate primitive roots of unity. We show that some modifications to the key generation setups and working with variants of the original hardness assumptions one can adapt the existing homomorphic encryption schemes to work in our algorithms.

The above set of algorithms on encrypted polynomials are useful building blocks for the design of secure computation protocols. We demonstrate their usefulness by utilizing them to solve two problems from the literature, namely the oblivious polynomial evaluation (OPE) and the private set intersection but expect the techniques to be applicable to other problems as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ateniese, G., De Cristofaro, E., Tsudik, G.: (if) size matters: size-hiding private set intersection, pp. 156–173 (2011)

    Google Scholar 

  2. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.F.: Breaking the \(O(n^{\frac{1}{2k-1}})\) barrier for information-theoretic private information retrieval. In: FOCS 2002, pp. 261–270 (2002)

    Google Scholar 

  3. Chang, Y.-C., Lu, C.-J.: Oblivious Polynomial Evaluation and Oblivious Neural Learning. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 369–384. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Cheon, J.H., Jarecki, S., Seo, J.H.: Multi-party privacy-preserving set intersection with quasi-linear complexity. Cryptology ePrint Archive, Report 2010/512 (2010)

    Google Scholar 

  5. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 297–301 (1965)

    Google Scholar 

  6. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient Robust Private Set Intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Secure Efficient Multiparty Computing of Multivariate Polynomials and Applications. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 130–146. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-Complexity Private Set Intersection Protocols Secure in Malicious Model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. De Cristofaro, E., Tsudik, G.: Practical Private Set Intersection Protocols with Linear Complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Franklin, M., Mohassel, P.: Efficient and Secure Evaluation of Multivariate Polynomials and Applications. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 236–254. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious Pseudorandom Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  14. von zur Gathen, J., Gerhard, J.: Modern computer algebra. Cambridge University Press, New York (1999)

    MATH  Google Scholar 

  15. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)

    Google Scholar 

  16. Hazay, C., Lindell, Y.: Constructions of truly practical secure protocols using standard smartcards. In: ACM CCS, pp. 491–500 (2008)

    Google Scholar 

  17. Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Adversaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 312–331. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications to Adaptive ot and Secure Computation of Set Intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Jarecki, S., Liu, X.: Fast Secure Computation of Set Intersection. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  22. Mohassel, P., Franklin, M.K.: Efficient Polynomial Operations in the Shared-Coefficient Setting. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 44–57. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evalutation. In: STOC, pp. 245–254 (1999)

    Google Scholar 

  24. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM Journal on Computing, 12–54 (2006)

    Google Scholar 

  25. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  26. Shamir, A.: How to share a secret. Communications of the ACM, 612–613 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mohassel, P. (2011). Fast Computation on Encrypted Polynomials and Applications. In: Lin, D., Tsudik, G., Wang, X. (eds) Cryptology and Network Security. CANS 2011. Lecture Notes in Computer Science, vol 7092. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25513-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25513-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25512-0

  • Online ISBN: 978-3-642-25513-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics