Skip to main content

The Effect of Host Morphology on Network Characteristics and Thermodynamical Properties of Ising Model Defined on the Network of Human Pyramidal Neurons

  • Conference paper
Complex Networks

Abstract

The question about the effect of the host (node) morphology on complex network characteristics and properties of dynamical processes defined on networks is addressed. The complex networks are formed by hosts represented by realistic neural cells of complex morphology. The neural cells of different types are randomly placed on a 3-dimensional cubic domain. The connections between nodes established according to overlaps between different nearest-neighbor hosts significantly depend on the host morphology and thus are also random. The influence of host morphology on the following network characteristics has been studied: edge density, clustering coefficient, giant component size, global efficiency, degree entropy, and assortative mixing. The zero-field Ising model has been used as a prototype model to study the effect of the host morphology on dynamical processes defined on the networks of hosts which can be in two states. The mean magnetization, internal energy and spin-cluster size as function of temperature have been numerically studied for several networks composed of hosts of different morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, K., Bones, B., Robinson, B., Hass, C., Lee, H., Ford, K., Roberts, T.A., Jacobs, B.: The morphology of supragranular pyramidal neurons in the human insular cortex: a quantitative Golgi study. Cereb. Cortex 19(9), 2131–2144 (2009)

    Article  Google Scholar 

  2. Ascoli, G.A.: Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nat. Rev. Neurosci. 7, 318–324 (2006)

    Article  Google Scholar 

  3. Ascoli, G.A., Scorcioni, R.: Neuron and Network Modeling. In: Zaborszky, L., Wouterlood, F.G., Lanciego, J.L. (eds.) Neuroanatomical Tract-Tracing, vol. 3, pp. 604–630. Springer, New York (2006)

    Chapter  Google Scholar 

  4. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  5. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

    Article  Google Scholar 

  6. da Costa, L.F., Manoel, E.T.M.: A percolation approach to neural morphometry and connectivity. Neuroinform. 1 (1), 65–80 (2003)

    Article  Google Scholar 

  7. da Costa, L.F., Coelho, R.C.: Growth-driven percolations: the dynamics of connectivity in neuronal systems. Eur. Phys. J. B 47, 571–581 (2005)

    Article  Google Scholar 

  8. da Costa, L.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of complex networks: a survey of measurements. Adv. Phys. 56 (1), 167–242 (2007)

    Article  Google Scholar 

  9. Eberhard, J.P., Wanner, A., Wittum, G.: NeuGen: A tool for the generation of realistic morphology of cortical neurons and neuronal networks in 3D. Neurocomputing 70(1-3), 327–342 (2006)

    Article  Google Scholar 

  10. Gleeson, P., Steuber, V., Silver, R.: Neuroconstruct: a tool for modeling networks of neurons in 3D space. Neuron. 54, 219–235 (2007)

    Article  Google Scholar 

  11. Hayes, T.L., Lewis, D.A.: Magnopyramidal neurons in the anterior motor speech region. Dendritic features and interhemispheric comparisons. Arch. Neurol. 53(12), 1277–1283 (1996)

    Article  Google Scholar 

  12. Jacobs, B., Schall, M., Prather, M., Kapler, E., Driscoll, L., Baca, S., Jacobs, J., Ford, K., Wainwright, M., Treml, M.: Regional dendritic and spine variation in human cerebral cortex: a quantitative Golgi study. Cereb. Cortex 11(6), 558–571 (2001)

    Article  Google Scholar 

  13. Koene, R.A., Tijms, B., van Hees, P., Postma, F., Ridder, A., Ramakers, G.J.A., van Pelt, J., van Ooyen, A.: NETMORPH: A framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies. Neuroinform. 7, 195–210 (2009)

    Article  Google Scholar 

  14. Lago-Fernández, L.F., Huerta, R., Corbacho, F., Sigüenza, J.A.: Fast response and temporal coherent oscillations in small-world networks. Phys. Rev. Lett. 84, 2758–2761 (2000)

    Article  Google Scholar 

  15. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001)

    Article  Google Scholar 

  16. Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002)

    Article  Google Scholar 

  17. Wang, B., Tang, H., Guo, C., Xiu, Z.: Entropy optimization of scale-free networks’ robustness to random failures. Phys. A 363(2), 591–596 (2005)

    Article  Google Scholar 

  18. Watson, K.K., Jones, T.K., Allman, J.M.: Dendritic architecture of the von Economo neurons. Neurosci. 141(3), 1107–1112 (2006)

    Article  Google Scholar 

  19. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  20. White, J.G., Southgate, E., Thomson, J.N., Brenner, S.: The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986)

    Article  Google Scholar 

  21. Yu, S., Huang, D., Singer, W., Nikolic, D.: A small world of neuronal synchrony. Cereb. Cortex 18, 2891–2901 (2008)

    Article  Google Scholar 

  22. Zubler, F., Douglas, R.: A framework for modeling the growth and development of neurons and networks. Front. Comput. Neurosci. (2009), doi: 10.3389/neuro.10.025.2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

da Silva, R.A.P., Palhares Viana, M., da Fontoura Costa, L. (2011). The Effect of Host Morphology on Network Characteristics and Thermodynamical Properties of Ising Model Defined on the Network of Human Pyramidal Neurons. In: da F. Costa, L., Evsukoff, A., Mangioni, G., Menezes, R. (eds) Complex Networks. Communications in Computer and Information Science, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25501-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25501-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25500-7

  • Online ISBN: 978-3-642-25501-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics