Skip to main content

Refractometric Photonic Chips for Biosensing

  • Chapter
  • First Online:
Optical Nano- and Microsystems for Bioanalytics

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 10))

  • 1774 Accesses

Abstract

Light is the historical medium for analysis in biology. Micro/nanotechnologies renewed the optical components fabrication processes following the example of electronics integration. A full optical system, as an interferometer or a spectrometer, for instance, can be integrated on a single chip and light can be confined at the nanometer scale allowing for interaction with a single biological entity (cell, enzyme, antigen, etc.). Thus, robust, portable, and sensitive systems can be developed by optical integration. Main ways to confine and propagate the electromagnetic wave will be introduced for the non-specialist: optical and plasmonic waveguides and photonic crystals will be discussed. Fabrication technologies for optical integration will be presented depending on the nature of the materials to be considered as semiconductors, glasses, metals, or polymer. Further is explained the sensing principle based on the detection of refractive index change. Finally, a review of the actual trends for the realization of biosensors is presented, discussed, and compared in terms of refractive index change resolution to come out with design strategies to enhance the sensors resolution for small volume detection and earlier diagnostic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stamnes JJ (1986) Waves in focal regions. Adam Hilger, Bristol and Boston

    Google Scholar 

  2. Saleh BEA, Teich MC (2007) Fundamentals of photonics, 2nd edn. Wiley, New York

    Google Scholar 

  3. Hill KO, Meltz G (1997) J Light Technol 15(8):1263–1276

    Article  CAS  Google Scholar 

  4. Joannopoulos JD et al (2008) Photonic crystals: molding the flow of light, 2nd edn. Princeton University Press, Princeton, NJ

    Google Scholar 

  5. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, Heidelberg

    Google Scholar 

  6. Sarid D (1981) Phys Rev Lett 47:1927–1930

    Article  CAS  Google Scholar 

  7. Weeber J-C et al (2005) Appl Phys Lett 87:221101

    Article  CAS  Google Scholar 

  8. Charbonneau R et al (2008) Sensor Actuat B 134:455–461

    Article  CAS  Google Scholar 

  9. Ghoshal A, Kik PG (2008) J Appl Phys 103:113111

    Article  CAS  Google Scholar 

  10. Van Roijen R, Verbeek GH (1995) Philips J Res 49:279–292

    Article  Google Scholar 

  11. Vandertoi JJGM et al (2010) Prog Quant Electron 34:135–172

    Article  CAS  Google Scholar 

  12. Masini G et al (2008) Germanium photodetectors enable scalable silicon photonics Proc. SPIE: Optoelectronics & communications DOI: 10.1117/2.1200806.1141

    Google Scholar 

  13. Palestino G et al (2008) Sensors and Actuators B 135(1):27–34

    Google Scholar 

  14. Lee M, Fauchet PM (2007) Opt Express 15:4530–4535

    Article  CAS  Google Scholar 

  15. Lemaire PJ et al (1993) Electron Lett 29(13):1191–1193

    Article  CAS  Google Scholar 

  16. Svalgaard M (1997) Electron Lett 33(20):1694–1695

    Article  Google Scholar 

  17. Almeda RM, Marques AC (2008) Mat Sci Eng B 149:118–122

    Article  CAS  Google Scholar 

  18. http://www.teemphotonics.com Website still available on 20th December, 2011

  19. Kribich RK et al (2007) Photonic circuits writing with UV pulsed laser, Physica Status Solidii C 4(1)

    Google Scholar 

  20. Brinker C Scherer G (1989) Sol-gel science: the physics and chemistry of sol-gel processing, Elsevier Science (USA), Academic Press

    Google Scholar 

  21. Xie J et al (2006) J Cryst Growth 292(2):227–229

    Article  CAS  Google Scholar 

  22. Zhang J et al (2009) Curr Opin Colloid Interface Sci 14(2):103–114

    Article  CAS  Google Scholar 

  23. Cakmak B et al (2010) Microelectron Eng 87(11):2343–2347

    Article  CAS  Google Scholar 

  24. Sun KW et al (2005) Opt Quant Electron 37:425–432

    Article  CAS  Google Scholar 

  25. Tahir BA, Ali J, Rahman RA (2006) J Optoelectron Adv Mat 8(4):1604–1609

    CAS  Google Scholar 

  26. Lukos W (1995) Sensor Actuat B 29:37

    Article  Google Scholar 

  27. Voros J (2002) Biomaterials 23:3699–3710

    Article  CAS  Google Scholar 

  28. Plachetka U et al (2008) Microelectron Eng 85:886–889

    Article  CAS  Google Scholar 

  29. Behrndt KH, Doughty DW (1966) J Vac Sci Technol 3(5):264–272

    Article  CAS  Google Scholar 

  30. Deparis O et al (2009) Plasma Process Polym 6:S746–S750

    Article  CAS  Google Scholar 

  31. Kakisawa H et al (2010) Mat Sci Eng B 173(1–3):94–98

    Article  CAS  Google Scholar 

  32. Mizutani M et al (2006) Phys Status Solidi C 3(3):659–662

    Article  CAS  Google Scholar 

  33. Endo T et al (2010) Sensor Actuat B 148:269–276

    Article  CAS  Google Scholar 

  34. Block ID et al (2006) Sensor Actuat B 120:187–193

    Article  CAS  Google Scholar 

  35. Zheng YB, Huang TJ (2008) Surface plasmons of metal nanostructure arrays: from engineering to active plasmonic, original report, 1535-5535/532.00

    Google Scholar 

  36. Jeong GH (2010) Fabrication of low-cost mold and nanoimprint lithography using polystyrene nanosphere. Microelectron Eng Arch 87(1):1978–1983

    Article  CAS  Google Scholar 

  37. Maleka CK, Saileb V (2004) Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review. Microelectron J 35:131–143

    Article  Google Scholar 

  38. Zlatanovic S et al (2009) Sensor Actuat B 141:13–19

    Article  CAS  Google Scholar 

  39. Skivesen N et al (2007) Opt Express 15:3169–3176

    Article  CAS  Google Scholar 

  40. Tormen M et al (2004) Microelectron Eng 73–74:535–541

    Article  Google Scholar 

  41. Zhou M et al (2008) J Mater Proc Technol 200:158–162

    Article  CAS  Google Scholar 

  42. Kim HJ et al (2007) Sensor Actuat B 124:147–152

    Article  CAS  Google Scholar 

  43. Romanato F et al (2003) Microelectron Eng 67–68:479–486

    Article  CAS  Google Scholar 

  44. Thirstrup C et al (2004) Sensor Actuat B 100:298–308

    Article  CAS  Google Scholar 

  45. Kim DW et al (2008) Mat Sci Eng B 149:242

    Article  CAS  Google Scholar 

  46. Das G et al (2008) Microelectron Eng 85(5–6):1282–1285

    Article  CAS  Google Scholar 

  47. Sakai N et al (2009) J Electroanal Chem 628(1–2):7–15

    CAS  Google Scholar 

  48. Matsushita T et al (2008) Sensor Actuat B 129:881–888

    Article  CAS  Google Scholar 

  49. Hong S-H et al (2010) Microelectron Eng 87:1315–1318

    Article  CAS  Google Scholar 

  50. Daviau R et al (2010) Microelectron Eng 87:1914–192

    Article  CAS  Google Scholar 

  51. Pedersen RH et al (2007) Microelectron Eng 84:895–898

    Article  CAS  Google Scholar 

  52. Buzzi S et al (2008) Metal direct nanoimprinting for photonics. Microelectron Eng 85:419–24

    Google Scholar 

  53. Hohenau A et al (2006) J Microelectron Eng Arch 83(4–9):1464–1467

    Article  CAS  Google Scholar 

  54. Boisselier E, Astruc D (2009) Chem Rev 38:1759–1782

    Article  CAS  Google Scholar 

  55. Daniel MC, Astruc D (2004) Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  56. Jana N et al (2001) J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  57. Nikoobakht B, El-Sayed MA (2003) Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  58. Nehl CL et al (2006) Nano Lett 6:683–688

    Article  CAS  Google Scholar 

  59. Liu M, Guyot-Sionnest P (2005) J Phys Chem B 109:22192–22200

    Article  CAS  Google Scholar 

  60. Brinson BE et al (2008) Langmuir 24:14166–14171

    Article  CAS  Google Scholar 

  61. Oldenburg S et al (1998) Chem Phys Lett 288:243–247

    Article  CAS  Google Scholar 

  62. Glomm WR (2005) J Disp Sci Technol 26:389–414

    Article  CAS  Google Scholar 

  63. Popp J, Strehle M (2006) Biophotnics – visions for better health care. Wiley, Berlin

    Book  Google Scholar 

  64. Kumar CSSR (2005) Biofunctionalization of nanomaterials. Wiley, Weinheim

    Google Scholar 

  65. Tiefenthaler K, Lukosz W (1989) J Opt Soc Am B 6(2):209–220

    Article  CAS  Google Scholar 

  66. Tiefenthaler K, Lukosz W (1985) Thin Solid Films 126:205–211

    Article  CAS  Google Scholar 

  67. Lukosz W (1991) Biosens Bioelectron 6:215–225

    Article  Google Scholar 

  68. Meade RD et al (1991) Phys Rev B 44(19):10961–10964

    Article  Google Scholar 

  69. Vandenbem C (2008) Opt Lett 33:2260–2262

    Article  Google Scholar 

  70. Robertson WM (1999) J Light Technol 17:2013–2017

    Article  CAS  Google Scholar 

  71. Kaneko F et al (2002) Mat Sci Eng B 22:409–412

    Article  Google Scholar 

  72. Konopsky VN, Alieva EV (2007) Anal Chem 79:4729–4735

    Article  CAS  Google Scholar 

  73. Villa F et al (2002) Opt Lett 27:646–648

    Article  CAS  Google Scholar 

  74. Shinn M, Robertson WM (2005) Sensor Actuat B 105:360–364

    Article  CAS  Google Scholar 

  75. Keiser G, Kao F-J (2008) Prog Biomed Opt Imaging 9(38):69911E1–69911E8

    Google Scholar 

  76. Nishihara H, Haruna M, Suhara T (1985) Optical integrated circuits. McGrawHill, New York

    Google Scholar 

  77. Luff BJ et al (1996) J Opt Lett 21(8):618–620

    Article  CAS  Google Scholar 

  78. McCosker RJ, Town G (2010) Sensor Actuat B 150:417–424

    Article  CAS  Google Scholar 

  79. Luff BJ (1998) J Light Technol 16(4):583

    Article  Google Scholar 

  80. Prietoa F et al (2003) Sensor Actuat B 92:151–158

    Article  CAS  Google Scholar 

  81. Shipper EF et al (1997) Sensor Actuat B 40:147–153

    Article  Google Scholar 

  82. Ulrich R, Kamiya T (1978) J Opt Soc Am 68(5):583–592

    Article  Google Scholar 

  83. Soldano LB, Pennings EM (1995) J Light Technol 13(4):615–627

    Article  Google Scholar 

  84. Mazingue T et al (2007) Opt Commun 278:312–316

    Article  CAS  Google Scholar 

  85. Palestino G et al (2008) Functionalization of nanostructured porous silicon microcavities for glucose oxidase detection. Sensors & Actuators B 135:27–34

    Google Scholar 

  86. Little BE et al (1997) J Lightwave Technol 15:998–1005

    Article  Google Scholar 

  87. Chin MK, Ho ST (1998) J Lightwave Technol 15:1433–1446

    Article  Google Scholar 

  88. Little BE et al (2000) IEEE Photonics Technol Lett 12:320–322

    Article  Google Scholar 

  89. Griffel G (2000) IEEE Photonics Technol Lett 12:810–812

    Article  Google Scholar 

  90. Little BE et al (1998) IEEE Photonics Technol Lett 10:549–551

    Article  Google Scholar 

  91. Chin MK et al (1999) IEEE Photonics Technol Lett 11:1620–1622

    Article  Google Scholar 

  92. Suzuki S, Oda K, Hibino Y (1995) IEEE J Lightwave Technol 13(8):1766–1771

    Article  Google Scholar 

  93. Kominato T et al (1992) IEEE J Lightwave Technol 10(12):1781–1788

    Article  CAS  Google Scholar 

  94. Chen Y et al (2009) Front Optoelectron China 2(3):304–307

    Article  Google Scholar 

  95. Carlborg CF et al (2010) Lab Chip 10:281–290

    Article  CAS  Google Scholar 

  96. Li H, Fan X (2010) Appl Phys Lett 97:011105

    Article  CAS  Google Scholar 

  97. Smit MK (1988) Electron Lett 24(7):385–386

    Article  Google Scholar 

  98. Takahashi H et al (1990) Electron Lett 26(2):87–88

    Article  Google Scholar 

  99. Dragone C (1991) IEEE Photonics Technol Lett 3(9):812

    Article  Google Scholar 

  100. Bachman M, Besse PA, Melchior H (1994) Appl Optics 33(18):3905–3911

    Article  Google Scholar 

  101. Porque J et al (2000) Opt Commun 183:45–49

    Article  CAS  Google Scholar 

  102. Kribich RK et al (2004) Thermo-optic switches using sol-gel processed hybrid materials, Integrated Optics and Photonic Integrated Circuits. Edited by Righini, Giancarlo C.; Honkanen, Seppo. Proceedings of the SPIE, Volume 5451, pp. 518–528

    Google Scholar 

  103. Hill KO et al (1978) Appl Phys Lett 32:647

    Article  Google Scholar 

  104. Liu Y (2001) Advanced fiber gratings and their application. Ph.D. Thesis, Aston University

    Google Scholar 

  105. Canning J (2008) Laser Photonics Rev 2(4):275–289, Wiley, USA

    Article  CAS  Google Scholar 

  106. Clerc D, Lukosz W (1993) Sensor Actuat B 11:461–465

    Article  Google Scholar 

  107. Brandenburg A, Gombert A (1993) Sensor Actuat B 17:35–40

    Article  CAS  Google Scholar 

  108. Desfours C et al (2009) Hybrid materials, France

    Google Scholar 

  109. Lukosz W et al (1990) Sensors and Actuators B: Chemical Volume 1, Issues 1-6, January 1990, Pages 585–588

    Article  Google Scholar 

  110. Chan LL et al (2007) Sensor Actuat B 120:392–398

    Article  CAS  Google Scholar 

  111. Block ID, Chan LL, Cunningham RT (2006) Sensor Actuat B 120:187–193

    Article  CAS  Google Scholar 

  112. Block ID, Chan LL, Cunningham RT (2007) Microelectron Eng 84:603–608

    Article  CAS  Google Scholar 

  113. Zhang W et al (2008) Sensor Actuat B 131:279–284

    Article  CAS  Google Scholar 

  114. Busch K et al (2007) Phys Rep 444:101–202

    Article  Google Scholar 

  115. Nair RV, Vijaya R (2010) Prog Quant Electron 34:89–134

    Article  CAS  Google Scholar 

  116. Hsiao F-L, Lee C (2009) Procedia Chemistry 1:417–420

    Article  Google Scholar 

  117. Srinivasan K, Painter O (2002) Opt Express 10:670–684

    Article  Google Scholar 

  118. Akahane Y et al (2003) Nature 425:944–947

    Article  CAS  Google Scholar 

  119. Dorfner D et al (2009) Biosens Bioelectron 24:3688–3692

    Article  CAS  Google Scholar 

  120. Cunningham BT et al (2002) Sensor Actuat B 85:219

    Article  Google Scholar 

  121. Homola J (2006) Surface plasmon resonance based sensors, vol 4, Springer series on chemical sensors and biosensors. Springer, Berlin

    Book  Google Scholar 

  122. Liedberg B, Nylander C, Lundstrm I (1983) Sensor Actuat B 4:299–304

    Article  CAS  Google Scholar 

  123. http://www.biacore.com Website still available on 20th December, 2011

  124. Kabashin AV, Patskovsky S, Grigorenko AN (2009) Opt Express 17(23):21191–21204

    Article  CAS  Google Scholar 

  125. VanWiggeren GD et al (2007) Sensor Actuat B Chem 127(2):341–349

    Article  CAS  Google Scholar 

  126. Ho HP et al (2007) Opt Commun 275:491–496

    Article  CAS  Google Scholar 

  127. Wang X et al (2011) Opt Express 19(1):107–117

    Article  Google Scholar 

  128. Massenot S et al (2007) Opt Commun 275:318–323

    Article  CAS  Google Scholar 

  129. Skorobogaity M, Kabashin AV (2006) Appl Phys Lett 89:143518

    Article  CAS  Google Scholar 

  130. Liu Y, Kim J (2010) Sensor Actuat B 148:23–28

    Article  CAS  Google Scholar 

  131. Sepulveda B et al (2009) Nano Today 4:244–251

    Article  CAS  Google Scholar 

  132. Schneider T et al ISSN 1864-6972, LIFIS online 06/09/10

    Google Scholar 

  133. DeMaria L, Martinelli M, Vegetti G (1993) Sensor Actuat B 12(3):221–223

    Article  CAS  Google Scholar 

  134. Fontana E (2002) IEEE Trans Microw Theory Tech 50(1):82–87

    Article  CAS  Google Scholar 

  135. Brambilla G (2010) Opt Fiber Technol 16:331–342

    Article  Google Scholar 

  136. Huang K-T, Lin T-J, Hsu M-H (2010) Biosens Bioelectron 26:11–15

    Article  CAS  Google Scholar 

  137. Kurihara K et al (2004) Anal Chim Acta 523(2):165–170

    Article  CAS  Google Scholar 

  138. Piliarik M, Vaisocherova H, Homola J (2007) Sensor Actuat B Chem 121(1):187–193

    Article  CAS  Google Scholar 

  139. Stocker P et al (2004) Sensor Actuat A Phys 116(2):224–231

    Article  CAS  Google Scholar 

  140. Wang TJ et al (2004) IEEE Photonics Technol Lett 16(7):1715–1717

    Article  CAS  Google Scholar 

  141. Harris RD et al (1999) Biosens Bioelectron 14(4):377–386

    Article  CAS  Google Scholar 

  142. Lin CW et al (2004) The second Asian and Pacific rim symposium on biophotonics, APBP 2004. pp 223–224

    Google Scholar 

  143. Lin CW et al (2006) Sensor Actuat B Chem 113(1):169–176

    Article  CAS  Google Scholar 

  144. Nikitin PI et al (1999) Sensor Actuat B Chem 54(1–2):43–50

    Article  Google Scholar 

  145. Suzuki A et al (2005) Sensor Actuat B Chem 106(1):383–387

    Article  CAS  Google Scholar 

  146. Homola J (1997) Sensor Actuat B 41:207–211

    Article  Google Scholar 

  147. Sepulveda B et al (2006) J Opt A Pure Appl Opt 8(7):S561–S566

    Article  CAS  Google Scholar 

  148. Debackere P et al (2006) Opt Express 14(16):7063–7072

    Article  Google Scholar 

  149. Matsui J et al (2005) Anal Chem 77(13):4282–4285

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael K. Kribich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kribich, R.K. (2012). Refractometric Photonic Chips for Biosensing. In: Fritzsche, W., Popp, J. (eds) Optical Nano- and Microsystems for Bioanalytics. Springer Series on Chemical Sensors and Biosensors, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25498-7_5

Download citation

Publish with us

Policies and ethics