Skip to main content

Nanotechnology for Diagnostic and Sensing: Soft and Advanced Imaging/Sensing Approaches to Analyze Biomolecules

  • Chapter
  • First Online:
Optical Nano- and Microsystems for Bioanalytics

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 10))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1(7):515–528

    Article  CAS  Google Scholar 

  2. Fan XD, White IM, Shopoua SI et al (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620(1–2):8–26

    Article  CAS  Google Scholar 

  3. Ligler FS (2009) Perspective on optical biosensors and integrated sensor systems. Anal Chem 81(2):519–526

    Article  CAS  Google Scholar 

  4. Martin-Palma RJ, Manso M, Torres-Costa V (2009) Optical biosensors based on semiconductor nanostructures. Sensors 9(7):5149–5172

    Article  CAS  Google Scholar 

  5. Collings AF, Caruso F (1997) Biosensors: recent advances. Rep Prog Phys 60(11):1397–1445

    Article  CAS  Google Scholar 

  6. Gellman SH (1997) Introduction: molecular recognition. Chem Rev 97(5):1231–1232

    Article  CAS  Google Scholar 

  7. deSilva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97(5):1515–1566

    Article  CAS  Google Scholar 

  8. Jung Y, Jeong JY, Chung BH (2008) Recent advances in immobilization methods of antibodies on solid supports. Analyst 133(6):697–701

    Article  CAS  Google Scholar 

  9. Rauf S, Zhou D, Abell C et al (2006) Building three-dimensional nanostructures with active enzymes by surface templated layer-by-layer assembly. Chem Commun (Camb) 16:1721–1723

    Article  Google Scholar 

  10. Barrett CR (1993) Silicon valley, what next. Mrs Bull 18(7):3–10

    Google Scholar 

  11. Clark RA, Hietpas PB, Ewing AG (1997) Electrochemical analysis in picoliter microvials. Anal Chem 69(2):259–263

    Article  CAS  Google Scholar 

  12. Xiang XD, Sun XD, Briceno G et al (1995) A combinatorial approach to materials discovery. Science 268(5218):1738–1740

    Article  CAS  Google Scholar 

  13. Manz A (1996) What can chips technology offer for next century’s chemistry and life sciences? Chimia 50(4):140–143

    CAS  Google Scholar 

  14. Kovacs GTA, Petersen K, Albin M (1996) Silicon micromachining – sensors to systems. Anal Chem 68(13):A407–A412

    Article  Google Scholar 

  15. Wu MC, Lin LY, Lee SS et al (1996) Integrated devices make an optical bench on a chip. Laser Focus World 32(2):64–68

    Google Scholar 

  16. Nussbaum P, Volke R, Herzig HP et al (1997) Design, fabrication and testing of microlens arrays for sensors and microsystems. Pure Appl Opt 6(6):617–636

    Article  Google Scholar 

  17. Xia YN, Tien J, Qin D et al (1996) Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing. Langmuir 12(16):4033–4038

    Article  CAS  Google Scholar 

  18. Xia YN, Rogers JA, Paul KE et al (1999) Unconventional methods for fabricating and patterning nanostructures. Chem Rev 99(7):1823–1848

    Article  CAS  Google Scholar 

  19. Xia YN, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed Engl 37(5):551–575

    Article  Google Scholar 

  20. Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  CAS  Google Scholar 

  21. Kumar A, Whitesides GM (1993) Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching. Appl Phys Lett 63(14):2002–2004

    Article  CAS  Google Scholar 

  22. Xia YN, Kim E, Zhao XM et al (1996) Complex optical surfaces formed by replica molding against elastomeric masters. Science 273(5273):347–349

    Article  CAS  Google Scholar 

  23. Zhao XM, Xia YN, Whitesides GM (1996) Fabrication of three-dimensional micro-structures: microtransfer molding. Adv Mater 8(10):837–840

    Article  CAS  Google Scholar 

  24. Kim E, Xia YN, Whitesides GM (1995) Polymer microstructures formed by molding in capillaries. Nature 376(6541):581–584

    Article  CAS  Google Scholar 

  25. Kim E, Xia YN, Zhao XM et al (1997) Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers. Adv Mater 9(8):651–654

    Article  CAS  Google Scholar 

  26. Rogers SS, van der Walle C, Waigh TA (2008) Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and Pseudomonas aeruginosa. Langmuir 24(23):13549–13555

    Article  CAS  Google Scholar 

  27. Terris BD, Mamin HJ, Best ME et al (1996) Nanoscale replication for scanning probe data storage. Appl Phys Lett 69(27):4262–4264

    Article  CAS  Google Scholar 

  28. Chou SY, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 Nm vias and trenches in polymers. Appl Phys Lett 67(21):3114–3116

    Article  CAS  Google Scholar 

  29. Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 268(5216):1466–1468

    Article  CAS  Google Scholar 

  30. Hoyer P (1996) Semiconductor nanotube formation by a two-step template process. Adv Mater 8(10):857–859

    Article  CAS  Google Scholar 

  31. Kim DC, Kang DJ (2008) Molecular recognition and specific interactions for biosensing applications. Sensors 8(10):6605–6641

    Article  CAS  Google Scholar 

  32. Blattler T, Huwiler C, Ochsner M et al (2006) Nanopatterns with biological functions. J Nanosci Nanotechnol 6(8):2237–2264

    Article  CAS  Google Scholar 

  33. Mendes PM, Yeung CL, Preece JA (2007) Bio-nanopatterning of surfaces. Nanoscale Res Lett 2(8):373–384

    Article  CAS  Google Scholar 

  34. Whitesides GM (2001) The once and future nanomachine – biology outmatches futurists’ most elaborate fantasies for molecular robots. Sci Am 285(3):78–83

    Article  CAS  Google Scholar 

  35. Yu B, Meyyappan M (2006) Nanotechnology: role in emerging nanoelectronics. Solid State Electron 50(4):536–544

    Article  CAS  Google Scholar 

  36. Netzer L, Sagiv J (1983) A new approach to construction of artificial monolayer assemblies. J Am Chem Soc 105(3):674–676

    Article  CAS  Google Scholar 

  37. Miyake T, Tanii T, Kato K et al (2007) Selectivity improvement in protein nanopatterning with a hydroxy-terminated self-assembled monolayer template. Nanotechnology 18(30):e6

    Article  Google Scholar 

  38. Ferretti S, Paynter S, Russell DA et al (2000) Self-assembled monolayers: a versatile tool for the formulation of bio-surfaces. TrAC-Trends Anal Chem 19(9):530–540

    Article  CAS  Google Scholar 

  39. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237

    Article  CAS  Google Scholar 

  40. Ariga K, Hill JP, Ji Q (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9(19):2319–2340

    Article  CAS  Google Scholar 

  41. Lvov YM, Lu ZQ, Schenkman JB et al (1998) Direct electrochemistry of myoglobin and cytochrome p450(cam) in alternate layer-by-layer films with DNA and other polyions. J Am Chem Soc 120(17):4073–4080

    Article  CAS  Google Scholar 

  42. Taton TA, Mucic RC, Mirkin CA et al (2000) The DNA-mediated formation of supramolecular mono- and multilayered nanoparticle structures. J Am Chem Soc 122(26):6305–6306

    Article  CAS  Google Scholar 

  43. Wohlstadter JN, Wilbur JL, Sigal GB et al (2003) Carbon nanotube-based biosensor. Adv Mater 15(14):1184–1187

    Article  CAS  Google Scholar 

  44. Shaikh KA, Ryu KS, Goluch ED et al (2005) A modular microfluidic architecture for integrated biochemical analysis. Proc Natl Acad Sci USA 102(28):9745–9750

    Article  CAS  Google Scholar 

  45. Fixe F, Dufva M, Telleman P et al (2004) Functionalization of poly(methyl methacrylate) (PMMA) as a substrate for DNA microarrays. Nucleic Acids Res 32(1):e9

    Article  CAS  Google Scholar 

  46. Wingren C, Borrebaeck CAK (2007) Progress in miniaturization of protein arrays – a step closer to high-density nanoarrays. Drug Discov Today 12(19–20):813–819

    Article  CAS  Google Scholar 

  47. Tan CP, Cipriany BR, Lin DM et al (2010) Nanoscale resolution, multicomponent biomolecular arrays generated by aligned printing with parylene peel-off. Nano Lett 10(2):719–725

    Article  CAS  Google Scholar 

  48. Sabella S, Brunetti V, Vecchio G et al (2009) Micro/nanoscale parallel patterning of functional biomolecules, organic fluorophores and colloidal nanocrystals. Nanoscale Res Lett 4(10):1222–1229

    Article  CAS  Google Scholar 

  49. Sabella S, Vecchio G, Cingolani R et al (2008) Real-time PCR in a plastic chip based on solid state FRET. Langmuir 24(23):13266–13269

    Article  CAS  Google Scholar 

  50. Martiradonna L, Stomeo T, De Giorgi M, Cingolani R, De Vittorio M (2006) Nanopatterning of colloidal nanocrystals emitters dispersed in a PMMA matrix by e-beam lithography. Microelectron Eng 83(4–9):1478–1481

    Article  CAS  Google Scholar 

  51. Mitchell P (2002) A perspective on protein microarrays. Nat Biotechnol 20(3):225–229

    Article  CAS  Google Scholar 

  52. Chan SM, Ermann J, Su L, Fathman CG et al (2004) Protein microarrays for multiplex analysis of signal transduction pathways. Nat Med 10(12):1390–1396

    Article  CAS  Google Scholar 

  53. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  54. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(4):55–62

    Article  CAS  Google Scholar 

  55. Johnson E, Aroca R (1991) Energy-transfer between langmuir-blodgett monolayers of organic-dyes. Can J Chem Revue Canadienne De Chimie 69(11):1728–1731

    Article  CAS  Google Scholar 

  56. Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298(1):1–24

    Article  CAS  Google Scholar 

  57. Lakowicz JR, Shen B, Gryczynski Z et al (2001) Intrinsic fluorescence from DNA can be enhanced by metallic particles. Biochem Biophys Res Commun 286(5):875–879

    Article  CAS  Google Scholar 

  58. Lakowicz JR, Shen Y, D'Auria S et al (2002) Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301(2):261–277

    Article  CAS  Google Scholar 

  59. Gryczynski I, Malicka J, Shen YB et al (2002) Multiphoton excitation of fluorescence near metallic particles: enhanced and localized excitation. J Phys Chem B 106(9):2191–2195

    Article  CAS  Google Scholar 

  60. Neal TD, Okamoto K, Scherer A (2005) Surface plasmon enhanced emission from dye doped polymer layers. Opt Express 13(14):5522–5527

    Article  CAS  Google Scholar 

  61. Tovmachenko OG, Graf C, van den Heuvel DJ et al (2006) Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv Mater 18(1):91–95

    Article  CAS  Google Scholar 

  62. Aslan K, Lakowicz JR, Geddes CD (2005) Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence. J Phys Chem B 109(13):6247–6251

    Article  CAS  Google Scholar 

  63. Nakamura T, Hayashi S (2005) Enhancement of dye fluorescence by gold nanoparticles: analysis of particle size dependence. Jpn J Appl Phys 44(9A):6833–6837, Part 1-Regular Papers Brief Communications & Review Papers

    Article  CAS  Google Scholar 

  64. Shimizu KT, Woo WK, Fisher BR et al (2002) Surface-enhanced emission from single semiconductor nanocrystals. Phys Rev Lett 89(11):e4

    Article  Google Scholar 

  65. Fort E, Gresillon S (2008) Surface enhanced fluorescence. J Phys D Appl Phys 41(1):e31

    Article  Google Scholar 

  66. Aslan K, Lakowicz JR, Szmacinski H et al (2004) Metal-enhanced fluorescence solution-based sensing platform. J Fluoresc 14(6):677–679

    Article  CAS  Google Scholar 

  67. Aslan K, Badugu R, Lakowicz JR et al (2005) Metal-enhanced fluorescence from plastic substrates. J Fluoresc 15(2):99–104

    Article  CAS  Google Scholar 

  68. Aslan K, Holley P, Geddes CD (2006) Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates. J Mater Chem 16(27):2846–2852

    Article  CAS  Google Scholar 

  69. Geddes CD, Gryczynski I, Malicka J et al (2003) Metal-enhanced fluorescence: potential applications in HTS. Comb Chem High Throughput Screen 6(2):109–117

    Article  CAS  Google Scholar 

  70. Lakowicz JR, Malicka J, D’Auria S et al (2003) Release of the self-quenching of fluorescence near silver metallic surfaces. Anal Biochem 320(1):13–20

    Article  CAS  Google Scholar 

  71. Aslan K, Malyn SN, Geddes CD (2006) Multicolor microwave-triggered metal-enhanced chemiluminescence. J Am Chem Soc 128(41):13372–13373

    Article  CAS  Google Scholar 

  72. Sabanayagam CR, Lakowicz JR (2007) Increasing the sensitivity of DNA microarrays by metal-enhanced fluorescence using surface-bound silver nanoparticles. Nucleic Acids Res 35(2):e13

    Article  Google Scholar 

  73. Zhang YX, Geddes CD (2010) Metal-enhanced fluorescence from thermally stable rhodium nanodeposits. J Mater Chem 20(39):8600–8606

    Article  CAS  Google Scholar 

  74. Aslan K, Geddes CD (2005) Microwave-accelerated metal-enhanced fluorescence: platform technology for ultrafast and ultrabright assays. Anal Chem 77(24):8057–8067

    Article  CAS  Google Scholar 

  75. Aslan K, Geddes CD (2006) Microwave-accelerated metal-enhanced fluorescence (MAMEF): application to ultra fast and sensitive clinical assays. J Fluoresc 16(1):3–8

    Article  CAS  Google Scholar 

  76. Aslan K (2010) Rapid whole blood bioassays using microwave-accelerated metal-enhanced fluorescence. Nano Biomed Eng 2(1):1–9

    Article  CAS  Google Scholar 

  77. Pompa PP, Martiradonna L, Della Torre A, Carbone L, del Mercato LL, Manna L, De Vittorio M, Calabi F, Cingolani R, Rinaldi R (2007) Fluorescence enhancement in colloidal semiconductor nanocrystals by metallic nanopatterns. Sens Actuators B Chem 126(1):187–192

    Article  Google Scholar 

  78. Kang C, Weiss SM (2008) Photonic crystal with multiple-hole defect for sensor applications. Opt Express 16(22):18188–18193

    Article  CAS  Google Scholar 

  79. Wojciechowski JR, Shriver-Lake LC, Yamaguchi MY et al (2009) Organic photodiodes for biosensor miniaturization. Anal Chem 81(9):3455–3461

    Article  CAS  Google Scholar 

  80. Wood RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc Phys Soc London 18:269–275

    Article  Google Scholar 

  81. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58(20):2059–2062

    Article  CAS  Google Scholar 

  82. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23):2486–2489

    Article  CAS  Google Scholar 

  83. Cunningham BT, Laing L (2006) Microplate-based, label-free detection of biomolecular interactions: applications in proteomics. Expert Rev Proteomics 3(3):271–281

    Article  CAS  Google Scholar 

  84. Mandal S, Erickson D (2008) Nanoscale optofluidic sensor arrays. Opt Express 16(3):1623–1631

    Article  Google Scholar 

  85. Luo C, Ibanescu M, Johnson SG et al (2003) Cerenkov radiation in photonic crystals. Science 299(5605):368–371

    Article  CAS  Google Scholar 

  86. Schudel BR, Choi CJ, Cunningham BT et al (2009) Microfluidic chip for combinatorial mixing and screening of assays. Lab Chip 9(12):1676–1680

    Article  CAS  Google Scholar 

  87. Block ID, Ganesh N, Lu M et al (2008) Sensitivity model for predicting photonic crystal biosensor performance. IEEE Sens J 8(3–4):274–280

    Article  CAS  Google Scholar 

  88. Mortensen NA, Xiao SS, Pedersen J (2008) Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications. Microfluid Nanofluidics 4(1–2):117–127

    Article  CAS  Google Scholar 

  89. Cunningham BT, Li P, Schulz S et al (2004) Label-free assays on the BIND system. J Biomol Screen 9(6):481–490

    Article  CAS  Google Scholar 

  90. El Beheiry M, Liu V, Fan SH, Levi O (2010) Sensitivity enhancement in photonic crystal slab biosensors. Opt Express 18(22):22702–22714

    Article  CAS  Google Scholar 

  91. Shamah SM, Cunningham BT (2011) Label-free cell-based assays using photonic crystal optical biosensors. Analyst 136(6):1090–1102

    Article  CAS  Google Scholar 

  92. Zlatanovic S, Mirkarimi LW, Sigalas MM et al (2009) Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration. Sens Actuators B Chem 141(1):13–19

    Article  Google Scholar 

  93. Martiradonna L, Pisanello F, Stomeo T et al (2010) Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips. Appl Phys Lett 96(11):e6

    Article  Google Scholar 

  94. Toccafondo V, Garcia-Ruperez J, Banuls MJ, Griol A, Castello JG, Peransi-Llopis S, Maquieira A (2010) Single-strand DNA detection using a planar photonic-crystal-waveguide-based sensor. Opt Lett 35(5–8):3673–3675

    Article  CAS  Google Scholar 

  95. Pisanello F, Martiradonna L, Pompa PP, Stomeo T, Qualtieri A, Vecchio G, Sabella S, De Vittorio M (2010) Parallel and high sensitive photonic crystal cavity assisted read-out for DNA-chips. Microelectron Eng 87(21):747–749

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross Rinaldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aloisi, A., Rinaldi, R. (2012). Nanotechnology for Diagnostic and Sensing: Soft and Advanced Imaging/Sensing Approaches to Analyze Biomolecules. In: Fritzsche, W., Popp, J. (eds) Optical Nano- and Microsystems for Bioanalytics. Springer Series on Chemical Sensors and Biosensors, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25498-7_3

Download citation

Publish with us

Policies and ethics