Skip to main content

Polymeric Microfluidic Devices for High Performance Optical Imaging and Detection Methods in Bioanalytics

  • Chapter
  • First Online:
Optical Nano- and Microsystems for Bioanalytics

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 10))

Abstract

The commercialization of miniaturized systems for bioanalytical applications demands fabrication methods which allow the generation of disposable devices which on the one hand fulfill requirements with respect to high geometrical precision and compatibility with the chemistries involved and, on the other hand, offer manufacturing cost which allows these devices to become low-cost disposables. We present a technology chain for the realization of such devices using polymer replication methods and subsequent back-end processing steps. Due to the usual complex set of requirements faced during the development of a bioanalytical system utilizing microfluidic functionality, development strategies for their implementation will be discussed. Practical examples of devices for the use in biotechnological applications will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manz A, Graber N, Widmer M (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B1:244–248

    CAS  Google Scholar 

  2. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  Google Scholar 

  3. Becker H (2009) Hype, hope and hubris: the quest for the killer application in microfluidics. Lab Chip 9:2119–2122

    Article  CAS  Google Scholar 

  4. Legendre LA, Morris CJ, Bienvenue JM, Barron A, McClure R, Landers JP (2008) Toward a simplified microfluidic device for ultra-fast genetic analysis with sample-in/answer-out capability: application to T-cell lymphoma diagnosis. JALA 13(6):351–360

    CAS  Google Scholar 

  5. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam M, Weigl B (2006) Microfluidic diagnostic technologies for global public health. Nature 442(7101):412–418

    Article  CAS  Google Scholar 

  6. Götz S, Karst U (2007) Recent developments in optical detection methods for microchip separations. Anal Bioanal Chem 387:183–192

    Article  Google Scholar 

  7. Baker CA, Duong CT, Grimley A, Roper MG (2009) Recent advances in microfluidic detection systems. Bioanalysis 1(5):967–975

    Article  CAS  Google Scholar 

  8. Martinez Vazquez R, Osellame R, Nolli D et al (2009) Waveguide integration in a lab-on-a-chip for fluorescence detection. Lab Chip 9:91–96

    Article  Google Scholar 

  9. Delville JP, de Saint Vincent MR, Schroll RD et al (2009) Laser microfluidics: fluid actuation by light. J Opt A Pure Appl Opt 11:034015, 15 pp

    Article  Google Scholar 

  10. Kotz KT, Noble KA, Faris GW (2004) Optical microfluidics. Appl Phys Lett 85:2658–2661

    Article  CAS  Google Scholar 

  11. Psaltis D, Quake SR, Yang SD (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386

    Article  CAS  Google Scholar 

  12. Cheng Y, Sugioka K, Midorikawa K (2004) Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt Lett 29(17):2007–2009

    Article  Google Scholar 

  13. Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111

    Article  CAS  Google Scholar 

  14. McCormick RM, Nelson RJ, Alonso-Amigo MG, Benvegnu DJ, Hooper HH (1997) Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Anal Chem 69:2626–2630

    Article  CAS  Google Scholar 

  15. Gärtner C, Becker H, Anton B, Rötting O (2003) Microfluidic toolbox: tools and standardization solutions for microfluidic devices for life sciences applications. In: Proceedings of SPIE microfluidics, BioMEMS, and medical microsystems II, San Jose, vol 5345, pp 159–162

    Google Scholar 

  16. Becker H (2009) It’s the economy. Lab Chip 9:2759–2762

    Article  CAS  Google Scholar 

  17. Tsao CW, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 6:1–16

    Article  CAS  Google Scholar 

  18. Pabst O, Perelaer J, Beckert E, et al. (2010) Inkjet printing and argon plasma sintering of an electrode pattern on polymer substrates using silver nanoparticle ink. In: Proceedings of NIP26: international conference on digital printing technologies and digital fabrication, Austin, pp 146–149

    Google Scholar 

  19. Soper SA, Henry AC, Vaidya B, Galloway M, Wabuyele M, McCarley RL (2002) Surface modification of polymer-based microfluidic devices. Anal Chim Acta 470:87–99

    Article  CAS  Google Scholar 

  20. Locascio LE, Henry AC, Johnson TJ, Ross D (2003) Surface chemistry in polymer microfluidic systems. In: Oosterbroeck RE, van den Berg A (eds) Lab-on-a-chip. Elsevier, Amsterdam, pp 65–82

    Chapter  Google Scholar 

  21. Belder D, Ludwig M (2003) Surface modification in microchip electrophoresis. Electrophoresis 24:3595–3606

    Article  CAS  Google Scholar 

  22. Nitschk M (2008) Plasma modification of polymer surfaces and plasma polymerization. In: Stamm M (ed) Polymer surfaces and interfaces: characterization, modification and applications. Springer, Berlin, pp 203–214

    Chapter  Google Scholar 

  23. Lin R, Burns MA (2005) Surface-modified polyolefin microfluidic devices for liquid handling. J Micromech Microeng 15:2156–2162

    Article  CAS  Google Scholar 

  24. Köhler JM, Dillner U, Mokansky A, Poser S, Schulz T (1998) Micro channel reactors for fast thermocycling. In: Proceedings of 2nd international conference on microreaction technology, New Orleans, 241–247. German Patent DE000004435107, 30 Sept 1994

    Google Scholar 

  25. Kopp MU, De Mello AJ, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280:1046–1048

    Article  CAS  Google Scholar 

  26. Gärtner C, Klemm R, Becker H (2007) Methods and instruments for continuous-flow PCR on a chip. In: Proceedings of SPIE microfluidics, BioMEMS and medical microsystems V, San Jose, vol 6465, pp 6465502–1 – 6465502–8

    Google Scholar 

  27. Ulrich MP, Christensen DR, Coyne SR et al (2006) Evaluation of the cepheid GeneXpert system for detecting Bacillus anthracis. J Appl Microbiol 100:1011–1016

    Article  CAS  Google Scholar 

  28. Becker H (2008) Microfluidics: a technology coming of age. Med Device Technol 19(3):21–24

    CAS  Google Scholar 

Download references

Acknowledgments

Parts of this work were funded by the German Federal Ministry of Education and Research (BMBF) (grant no. 13N9556) and managed by the Projektträger VDI-Technologiezentrum Physikalische Technologien. We would like to acknowledge the kind support by all partners of the joint project

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Becker, H., Gärtner, C. (2012). Polymeric Microfluidic Devices for High Performance Optical Imaging and Detection Methods in Bioanalytics. In: Fritzsche, W., Popp, J. (eds) Optical Nano- and Microsystems for Bioanalytics. Springer Series on Chemical Sensors and Biosensors, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25498-7_10

Download citation

Publish with us

Policies and ethics