Skip to main content

Mobile Robot Controller Design by Evolutionary Multiobjective Optimization in Multiagent Environments

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7102))

Included in the following conference series:

Abstract

Evolutionary computation has been often used for the design of mobile robot controllers thanks to its flexibility and global search ability. A lot of studies have been done based on single-objective functions including weighted-sum scalarizing objective functions. For an example of mobile robot navigation, at least the minimization of the arrival time to the target and the minimization of dangerous situations should be considered. In this case, a weighted-sum of two objectives is always minimized. It is, however, difficult to specify an appropriate weight vector beforehand. This paper demonstrates the application of evolutionary multiobjective optimization to mobile robot navigation in order to optimize the conflicting objective simultaneously. We analyze the obtained non-dominated controllers through simulation experiments in multiagent environments. We also show the utilization of the obtained non-dominated controllers for situation change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cliff, D., Harvey, I., Husband, P.: Explorations in Evolutionary Robotics. Adaptive Behavior 2, 73–110 (1993)

    Article  Google Scholar 

  2. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. The MIT Press (2000)

    Google Scholar 

  3. Hoffmann, F., Pfister, G.: Evolutionary Design of a Fuzzy Knowledge Base for Mobile Robot. International Journal of Approximate Reasoning 17, 447–460 (1997)

    Article  MATH  Google Scholar 

  4. Kubota, N., Morioka, T., Kojima, F., Fukuda, T.: Learning of Mobile Robots using Perception-based Genetic Algorithm. Measurement 29, 237–248 (2001)

    Article  Google Scholar 

  5. Hoffmann, F., Schauten, D., Holemann, S.: Incremental Evolutionary Design of TSK Fuzzy Controllers. IEEE Trans. on Fuzzy Systems 15(4) (August 2007)

    Google Scholar 

  6. Vadakkepat, P., Peng, X., Kiat, Q.B., Heng, L.T.: Evolution of Fuzzy Behaviors for Multi-robotic Systems. Robotics and Autonomous Systems 55, 146–161 (2007)

    Article  Google Scholar 

  7. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  8. Coello, C.A.C., van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer, Boston (2002)

    Book  MATH  Google Scholar 

  9. Capi, G.: Multiobjective Evolution of Neural Controllers and Task Complexity. IEEE Trans. on Robotics 23(6) (December 2007)

    Google Scholar 

  10. Kim, J.-H., Kim, Y.-H., Choi, S.-H., Park, I.-W.: Evolutionary Multi-objective Optimization in Robot Soccer System for Education. IEEE Computational Intelligence Magazin, 31–41 (February 2009)

    Google Scholar 

  11. Katada, Y.: Distribution of Non-dominated Solutions and Preferred Solutions in the Objective Function Space for an Evolutionary Multi-objective Mobile Robot. In: Proc. of Joint 5th International Conference on Soft Computing and Intelligent Systems and 11th International Symposium on Advanced Intelligent Systems, pp. 710–715 (2010)

    Google Scholar 

  12. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing Local Optima in Single-Objective Problems by Multi-Objectivization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Jensen, M.T.: Guiding Single-Objective Optimization Using Multi-objective Methods. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 268–279. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Nojima, Y.: Multi-objective Behavior Coordination based on Sensory Network for Multiple Mobile Robots. In: Proc. of 2009 IEEE Workshop on Robotic Intelligence in Informationally Structured Space, pp. 66–72 (2009)

    Google Scholar 

  15. Brooks, R.A.: A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation RA-2, 14–23 (1986)

    Article  Google Scholar 

  16. Brooks, R.A.: Cambrian Intelligence. The MIT Press (1999)

    Google Scholar 

  17. Arkin, R.C.: Behavior-Based Robotics. The MIT Press (1998)

    Google Scholar 

  18. Saffiotti, A.: The Use of Fuzzy Logic in Autonomous Robot Navigation. Soft Computing 1, 180–197 (1997)

    Article  Google Scholar 

  19. Bonarini, A., Invernizzi, G., Labella, T.H., Matteucci, M.: An Architecture to Coordinate Fuzzy Behaviors to Control an Autonomous Robot. Fuzzy Sets and Systems 134, 101–115 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nojima, Y., Kubota, N., Kojima, F., Fukuda, T.: Control of Behavior Dimension for Mobile Robots. In: Proc. of The Forth Asian Fuzzy Systems Symposium, pp. 652–657 (2003)

    Google Scholar 

  21. Fukuda, T., Kubota, N.: An Intelligent Robotic System based on a Fuzzy Approach. Proceedings of IEEE 87(9), 1448–1470 (1999)

    Article  Google Scholar 

  22. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  23. Eshelman, L.J., Schaffer, J.D.: Real-coded Genetic Algorithms and Interval-Schemata. In: Foundations of Genetic Algorithms, vol. 2, pp. 187–202. Morgan Kaufman, San Mateo (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nojima, Y., Ishibuchi, H. (2011). Mobile Robot Controller Design by Evolutionary Multiobjective Optimization in Multiagent Environments. In: Jeschke, S., Liu, H., Schilberg, D. (eds) Intelligent Robotics and Applications. ICIRA 2011. Lecture Notes in Computer Science(), vol 7102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25489-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25489-5_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25488-8

  • Online ISBN: 978-3-642-25489-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics