Skip to main content

Thin Films for Thermoelectric Applications

  • Chapter
  • First Online:

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The introduction of nanotechnology opened new horizons previously unattainable by thermoelectric devices. The nano-scale phenomena began to be exploited through techniques of thin-film depositions to increase the efficiency of thermoelectric films. This chapter reviews the fundamentals of the phenomenon of thermoelectricity and its evolution since it was discovered in 1822. This chapter also reviews the thermoelectric devices, the macro to nano devices, describing the most used techniques of physical vapor depositions to deposit thermoelectric thin-films. A custom made deposition chamber for depositing thermoelectric thin films by the thermal co-evaporation technique, where construction issues and specifications are discussed, is then presented. All the steps for obtaining a thermoelectric generator in flexible substrate with the custom deposition chamber (to incorporate in thermoelectric microsystems) are described. The aim of thermoelectric microsystem relays is to introduce an energy harvesting application to power wireless sensor networks (WSN) or biomedical devices. The scanning probe measuring system for characterization of the thermoelectric thin films are also described in this chapter. Finally, a few of the prototypes of thermoelectric thin films (made of bismuth and antimony tellurides, \({\mathrm{Bi}}_{2}{\mathrm{Te}}_{3}\), and \({\mathrm{Sb}}_{2}{\mathrm{Te}}_{3}\), respectively) obtained by co-evaporation (using the custom made deposition chamber) and characterized for quality assessment are dealt with. All the issues involved in the co-evaporation and characterization are objects of analysis in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T.H.J. Seebeck, Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz (Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 1822), pp. 265–373.

    Google Scholar 

  2. Peltier, Nouvelles Expériences sur la Caloricité des Courans Électrique, Annales de Phys. et de Chimie. 180–193 (1834).

    Google Scholar 

  3. H.F.E. Lenz, Über die Gesetze die Elektricitätsleitung in Drähten von verschieden Lange u Dicke, Mém. Acad. St Pétersb. Sér. VI III, 1838.

    Google Scholar 

  4. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, 1st edn. (Infosearch, London, 1957).

    Google Scholar 

  5. W. Thomson, On an absolute thermometric scale founded on Carnot’s theory of the motive power of heat, and calculated from Regnault’s observations, Philosophical Magazine, 1848, http://www.google.pt/books?hl=pt-PT\&lr=\&id=1F8_MdJDLhAC\&oi=fnd\&pg=PR1\&dq=Mathematical+and+Physical+Papers+of+William+Thomson\&ots=5qNjfKxzmP\&sig=dHcA7zvZ4eJpWC8tCFkJ0eKzT3M\&redir_esc=y#v=onepage\&q=Mathematical\%20and\%20Physical\%20Papers\%20of\%20William\%20Thomson\&f=false.

    Google Scholar 

  6. W. Thomson, On a mechanical theory of thermo-electric currents, Proc. R. Soc Edinb. III(40), 91–98 (1851).

    Google Scholar 

  7. D.M. Rowe, Handbook of Thermoelectrics, 1st edn. (CRC Press, Boca Raton, 1995).

    Google Scholar 

  8. Lord Rayleigh, On the thermodynamic efficiency of the thermopile, Philos. Mag. Ser. 5, 1941–5990, XX(125), 361–363 (1885).

    Google Scholar 

  9. E. Altenkirch, Uber den Nutzeffeckt der Thermosaule, Phys. Z. 10, 560–580 (1909).

    Google Scholar 

  10. E. Altenkirch, Electrothermische Kalteerzeugung und Reversible Electrische Heizung, Phys. Z. 12, 920–924 (1911).

    Google Scholar 

  11. M. Telkes, The efficiency of thermoelectric generators, J. Appl. Phys. 18, 1116–1127 (1947).

    Google Scholar 

  12. A.F. Ioffe, Energeticheskic Osnovy Termoelektricheskikh Baterei iz Poluprovoduikov, Acad. Sci. USSR, 1949.

    Google Scholar 

  13. Yu.P. Maslakovets, Heat energy conversion in electrical one by semiconductor thermocouples, D.Sc. thesis, A.F. Ioffe Physical-Technical Institute, 1949.

    Google Scholar 

  14. L.S. Stilbans, The investigation and new applications of semiconductor thermocouples, Ph.D. thesis, A.F. Ioffe Physica1-Technical Institute, 1951.

    Google Scholar 

  15. L.S. Stilbans, The investigation and some applications of semiconductor thermoelements, D.Sc. thesis, A.F. Ioffe Physical-Technical Institute, 1960.

    Google Scholar 

  16. M.V. Vedernikov, E.K. Jordanishvili, A.F. Ioffe and origin of modern semiconductor thermoelectric energy conversion, in 17th International Conference on Thermoelectrics, 1998, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=\&arnumber=740313\&contentType=Conference+Publications\&searchField\%3DSearch_All\%26queryText\%3DA.F.+Ioffe+and+origin+of+modern+semiconductor+thermoelectric+energy+conversion.

    Google Scholar 

  17. A.F. Ioffe et al., On an increasing of efficiency of semiconductor thermocouples. The Reports of Academy of Sciences USSR, vol. 106, (1956), p. 981 (In Russian)

    Google Scholar 

  18. H.J. Goldsmid, R.W. Douglas, The use of semiconductors in thermoelectric refrigeration, Br. J. Appl. Phys. 5(l), 386–390 (1954).

    Google Scholar 

  19. W.B. Pearson, W.B. Templetion, Thermo-electricity at low temperatures. III. The absolute scale of thermo-electric power: a critical discussion of the present scale at low temperatures and preliminary measurements towards its redetermination, Proc. R. Soc. A 231, 534–544 (1955).

    Google Scholar 

  20. J.W. Christian et al., Thermo-electricity at low temperatures. VI. A redetermination of the absolute scale of thermo-electric power of lead, Proc. R. Soc. A 245, 213–221 (1958).

    Google Scholar 

  21. R.B. Roberts, Absolute scale of thermoelectricity, Nature 265, 226–227 (1977).

    Google Scholar 

  22. C.B. Vining, Thermopower to the people, Nature 423, 391–392 (2003).

    Google Scholar 

  23. C.B. Vining, Semiconductors are cool, Nature 413, 577–578 (2001).

    Google Scholar 

  24. T.L. Charland et al., Process for the preparation of thermoelectric elements, US Patent No. 3086068, 1963.

    Google Scholar 

  25. R.C. Linnon, Method of manufacturing a thermoelectric device, US Patent No. 4054478, 1977.

    Google Scholar 

  26. K. Yamada et al., Thermoelectric module unit, US Patent No. 6233944 B1, 2001.

    Google Scholar 

  27. IAV Gmbh, Thermoelectrics in motion electric power from waste heat – A chance for the automotive industry, in 1st IAV Conference on Thermoelectrics – A Chance for the Automotive Industry?, 2008, http://www.iav.com/sites/default/files/handouts/2011/en/thermoelectrics-motion.pdf.

  28. J. LaGrandeur et al., Vehicle fuel economy improvement through thermoelectric waste heat recovery, in Proceedings of the 11th Diesel Engine Emissions Reduction (DEER) Conference, 2005, http://www.bsst.com/technical_papers.php.

  29. G.J. Snyder, Small thermoelectric generators, Electrochem. Soc. Interface Fall, 54–56 (2008).

    Google Scholar 

  30. J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics, in Pervasive Computing, 2005, http://dl.acm.org/citation.cfm?id=1048797

  31. S. Watanabe et al., Development of eco-drive thermo, Micromechatronics, 44, 25–31 (2000). (In Japanese)

    Google Scholar 

  32. D.M. Rowe, Review thermoelectric waste heat recovery as a renewable energy source, Int. J. Innovat. Energy Syst. Power 1(1), 13–23 (2006).

    Google Scholar 

  33. D.M. Rowe, Miniature thermoelectric convertors, U.K. Patent No. 8714698, 1988.

    Google Scholar 

  34. H. Böttner, Micropelt{ $Ⓡ$} miniaturised thermoelectric devices: small size, high cooling power densities, short response time, in 24th International Conference on Thermoelectrics, 2005.

    Google Scholar 

  35. H. Böttner et al., New thermoelectric components using microsystem technologies, J. Microelectromech. Syst. 13(3), 414–420 (2004).

    Google Scholar 

  36. http://www.micropelt.com/ Consulted on 26 May 2012.

  37. http://www.nextreme.com/ Consulted on 23 May 2012.

  38. V. Leonov et al., Thermoelectric converters of human warmth for self-powered wireless sensor nodes, IEEE Sensors J. 7(5), 650–657 (2007).

    Google Scholar 

  39. F. Völklein et al., Thermoelectric microsensors and microactuators (MEMS) fabricated by thin-film technology and micromachining, in 18th International Conference on Thermoelectrics, 1999, http://ieeexplore.ieee.org/xpl/login.jsp?tp=\&arnumber=843387\&url=http\%3A\%2F\%2Fieeexplore.ieee.org\%2Fiel5\%2F6791\%2F18227\%2F00843387.pdf\%3Farnumber\%3D843387.

    Google Scholar 

  40. Z. Wang et al., Realization of a wearable miniaturized thermoelectric generator for human body applications, Sens. Actuat. A Phys. 156, 95–102 (2009).

    Google Scholar 

  41. J. Weber et al., Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics, Sens. Actuat. A Phys. 132(1), 325–330 (2006).

    Google Scholar 

  42. V. Leonov, R.J.M. Vullers, Wearable electronics self-powered by using human body heat: the state of the art and the perspective, J. Renew. Sust. Energy 1(6), 1–14 (2009).

    Google Scholar 

  43. D.D.L. Wijngaards, Lateral on-chip integrated Peltier elements based on polycrystalline silicon germanium, Ph.D. thesis, Technische Universiteit Delft, 2003.

    Google Scholar 

  44. L. da Silva, Integrated micro thermoelectric cooler: theory, fabrication and characterization, Ph.D. thesis, University of Michigan, 2005.

    Google Scholar 

  45. L.M. Goncalves, Microssistema termoeléctrico baseado em teluretos de bismuto e antimónio, Ph.D. thesis, University of Minho, 2008.

    Google Scholar 

  46. L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 47(19), 12727–12731 (1993).

    Google Scholar 

  47. R. Venkatasubramanian et al., Thin-film thermoelectric devices with high room-temperature figure of merit, Nature 413, 597–602 (2001).

    Google Scholar 

  48. http://www.rti.org/ Consulted on 23 May 2012.

  49. R. Ewell et al., SP-100 thermoelectric cell testing at JPL, NASA Jet Propulsion Laboratory.

    Google Scholar 

  50. R. Venkatasubramanian et al., Energy harvesting for electronics with thermoelectric devices using nanoscale materials, in IEEE Electron Devices Meeting, pp. 367–370, 2007, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4418948.

  51. J. Heo et al., EARQ: energy aware routing for real-time and reliable communication in wireless industrial sensor networks, IEEE Trans. Ind. Electron. 5(1), 3–11, 2009.

    Google Scholar 

  52. J. Lee et al., Group connectivity model for industrial wireless sensor networks, IEEE Trans. Ind. Electron. 57(5), 1835–1844 (2010).

    Google Scholar 

  53. B. Lu, V.C. Gung, Online and remote motor energy monitoring and fault diagnostics using wireless sensor networks, IEEE Trans. Ind. Electron. 56(11), 4651–4659 (2009).

    Google Scholar 

  54. J.P. Carmo et al., A 2.4-GHz CMOS short-range wireless-sensor-network interface for automotive applications, IEEE Trans. Ind. Electron. 57(5), 1764–1771 (2010).

    Google Scholar 

  55. J. Liu, J. Yao, Wireless RF identification system based on SAW, IEEE Trans. Ind. Electron. 55(2), 958–961 (2008).

    Google Scholar 

  56. J.H. Correia, J.P. Carmo, Introdução às Microtecnologias no Silício, 1st edn. (Lidel, 2010), http://www.fca.pt/cgi-bin/lidel_main.cgi/?op=3\&mnu=30\&edicao=1\&isbn=978-972-757-716-3\&novidade=0.

    Google Scholar 

  57. R. Lobo, Nanotecnologia e Nanofísica, 1st edn. (Escolar Editora, 2010), http://www.fnac.pt/Nanotecnologia-e-Nanofisica-RUI-FILIPE-MARMONT-LOBO/a279331?PID=5\&Mn=-1\&Ra=-1\&To=0\&Nu=1\&Fr=0.

    Google Scholar 

  58. J. Singh, Semiconductors Devices: An Introduction (McGraw Hill, New York, 1994).

    Google Scholar 

  59. S.O. Kasap, Principles of Electrical Engineering Materials and Devices (McGraw Hill, New York, 2000).

    Google Scholar 

  60. H. Zou et al., Peltier effect in a co-evaporated \({\mathrm{Sb}}_{2}{\mathrm{Te}}_{3}\)(P)-\({\mathrm{Bi}}_{2}{\mathrm{Te}}_{3}\)(N) thin film thermocouple, Thin Solid Films 408(1–2), 270–274 (2002).

    Google Scholar 

  61. J.P. Carmo et al., Thermoelectric microconverter for energy harvesting systems, IEEE Trans. Ind. Electron. 57(3), 861–867 (2010).

    Google Scholar 

  62. A.A.R. Elshabini, F.D. Barlow III, Thin Film Technology Handbook, 1st edn. (McGraw-Hill, New York, 1998).

    Google Scholar 

  63. L.J. van de Pauw, A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Res. Rep. 13(1), 1–9 (1958).

    Google Scholar 

  64. S.A. Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd edn. (Oxford University Press, Oxford, 2001).

    Google Scholar 

  65. D.M. Mattox, Handbook of Physical Vapor Deposition (PDV) Processing: Film Formation, Adhesion, Surface Preparation and Contamination Control (Noyes Publications, Westwood, 1998).

    Google Scholar 

  66. http://www.thermonics.com/ Consulted on 28 May 2012.

  67. D.A. Glocker, S.I. Shah, Handbook of Thin Film Process Technology (Institute of Physics Publishing, Philadelphia, 1995).

    Google Scholar 

  68. Ottonis de Guericke, Experimenta Nova (ut vocantur) Magdeburgica De Vacuo Spatio (J. Jansson à Waesberge, Amsterdam, 1672).

    Google Scholar 

  69. M. Ohring, Materials Science of Thin Films, 2nd edn. (Academic, Burlington, 2001).

    Google Scholar 

  70. A.E. Riad, F.D. Barlow III, Thin Film Technology Handbook (McGraw-Hill, new York, 1998).

    Google Scholar 

  71. L.W. da Silva, M. Kaviany, Miniaturized thermoelectric cooler, in ASME’02, New Orleans, 17–22 Nov 2002.

    Google Scholar 

  72. L. Wasnievski da Silva, M. Kaviany, Fabrication and measured performance of a first-generation microthermoelectric cooler, J. Microelectromech. Syst., 14(5), 1110 (2005).

    Google Scholar 

  73. H. Böttner et al., New thermoelectric components using microsystem technologies, J. Microelectromech. Syst. 13, 414–420 (2004).

    Google Scholar 

  74. C. Shafai, Fabrication of a micro-Peltier device, National Library of Canada, p. 76, 1998.

    Google Scholar 

  75. L.M. Goncalves et al., Thermoelectric micro converters for cooling and energy scavenging systems, J. Micromech. Microeng. 18(6), 1–5 (2008), http://dei-s1.dei.uminho.pt/pessoas/higino/pampus/jmm_LG_2008.pdf.

    Google Scholar 

  76. H. Zou, Preparation and characterization of bismuth telluride and antimony telluride thermoelectric thin films, Ph.D. thesis, Cardiff, 2003.

    Google Scholar 

  77. L. da Silva, Micro thermoelectric cooler fabrication: growth and characterization of patterned \({\mathrm{Sb}}_{2}{\mathrm{Te}}_{3}\) and \({\mathrm{Bi}}_{2}{\mathrm{Te}}_{3}\) films, in 22nd International Conference on Thermoelectrics, 2003, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true\&arnumber=1287600\&contentType=Conference+Publications.

    Google Scholar 

  78. A. Giani et al., Growth of \({\mathrm{Bi}}_{2}{\mathrm{Te}}_{3}\) and \({\mathrm{Sb}}_{2}{\mathrm{Te}}_{3}\) thin films by MOCVD, Mater. Sci. Eng. B 64(1), 19–24 (1999).

    Google Scholar 

  79. A. Foucaran et al., Flash evaporated layers of (\({\mathrm{Bi}}_{2}{\mathrm{Te}}_{3}\mbox{ \textendash }{\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}\))(N) and (\({\mathrm{Bi}}_{2}{\mathrm{Te}}_{3}\) \({\mathrm{Sb}}_{2}{\mathrm{Te}}_{3}\))(P), Mater. Sci. Eng. B 52(2–3), 154–161 (1998).

    Google Scholar 

  80. J.R. Lin et al., Thermoelectric microdevice fabrication process and evaluation at the Jet Propulsion Laboratory (JPL), in 21st International Conference on Thermoelectrics, 2002, http://ieeexplore.ieee.org/xpl/login.jsp?tp=\&arnumber=1190373\&url=http\%3A\%2F\%2Fieeexplore.ieee.org\%2Fxpls\%2Fabs_all.jsp\%3Farnumber\%3D1190373.

    Google Scholar 

  81. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986).

    Google Scholar 

  82. http://www.goodfellow.com/ Consulted on 23 May 2012.

  83. L.M. Goncalves et al., Optimization of thermoelectric properties on \({\mathrm{Bi}}_{2}{\mathrm{Te}}_{3}\) thin films deposited by thermal co-evaporation, Thin Solid Films 518, 2816–2821 (2010).

    Google Scholar 

  84. L.M. Goncalves et al., Thermal co-evaporation of \({\mathrm{Sb}}_{2}{\mathrm{Te}}_{3}\) thin-films optimized for thermoelectric applications, Thin Solid Films 519, 4152–4157 (2011).

    Google Scholar 

  85. D. Platzek et al., Potential-Seebeck-microprobe (PSM): measuring the spatial resolution of the Seebeck coefficient and the electric potential, in Proc. of 24 th International Conference on Thermoelectrics (ICT 2005), pp. 13–16, 2005, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=\&arnumber=1519875\&contentType=Conference+Publications\&queryText\%3DPotential-Seebeck-microprobe+.LB.PSM.RB.\%3A+measuring+the+spatial+resolution+of+827+the+Seebeck+coefficient+and+the+electric+potential

    Google Scholar 

  86. P. Reinshaus et al., Proc. 2nd Europ. Symposium on ThermoelectricsMaterials, Processing Techniques, and Applications, Dresden, p. 90, 1994.

    Google Scholar 

  87. D. Platzek et al., An automated microprobe for temperature dependent spatial scanning of the Seebeck coefficient, in Proc. 22nd International Conference on Thermoelectrics (ICT2003), pp. 528–531, 2004, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=\&arnumber=1287567\&contentType=Conference+Publications\&queryText\%3DAn+automated+microprobe+for+temperature+dependent+spatial+scanning+of+the+832+Seebeck+coefficient.

    Google Scholar 

  88. D. Platzek et al., Anisotropy of the Seebeck coefficient detected by the Seebeck scanning microprobe, in Proc. 8th European Workshop on Thermoelectrics, 2004, http://home.agh.edu.pl/~ets2004/proceedings/Platzek.PDF.

  89. http://www.panco.de/ Consulted on 23 May 2012.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Silva, M.F., Ribeiro, J.F., Carmo, J.P., Gonçalves, L.M., Correia, J.H. (2012). Thin Films for Thermoelectric Applications. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology 3. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25414-7_17

Download citation

Publish with us

Policies and ethics