Skip to main content

Application of Atomic Force Microscopy in Natural Polymers

  • Chapter
  • First Online:
  • 2675 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Natural polymers work in complete harmony, much like an orchestra, because nature finds ways to minimize the amount of materials and energy used to perform its vital functions. Polymer scientists and students are truly nature’s apprentices and should be inspired to develop sustainable innovations based on observations of the natural world. With the current challenges in the world regarding environmental issues, the development of new sources of energy, and the substitution of synthetic polymers for natural materials, the study of polymers has naturally been gaining momentum. Therefore, an understanding of nature allows polymer scientists to reinvent and innovate materials and processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P.K. Hansma, V.B. Elings, O. Marti, C.E. Bracker, Science 242, 209–216 (1988).

    Google Scholar 

  2. O. Marti; H.O. Ribi; B. Drake, T.R. Albrecht, C.F. Quate, P.K. Hansma, Science 239, 50–52 (1988).

    Google Scholar 

  3. S.J. Hanley, J. Giasson, J-F. Revol, D.G. Gray, Polymer 33, 4639–4642 (1992).

    Google Scholar 

  4. D. Fengel, G. Wegener. Wood: Chemistry, Ultrastructure Reactions (Walter de Gruyter, Berlin, 1984).

    Google Scholar 

  5. M.L.O. D’Almeida. Celulose e Papel, 2nd edn. (IPT, Sao Paulo, 1988).

    Google Scholar 

  6. E. Sjöström. Wood Chemistry: Fundamentals and Applications (Academic, New York, 1981).

    Google Scholar 

  7. L.M. Burger, H.G. Richter. Anatomia da Madeira (Livraria Nobel S.A., Sao Paulo, 1991).

    Google Scholar 

  8. E. Sjoholma, K. Gustafssona, F. Bertholda, A. Colmsjo, Carbohydr. Polym. 41, 1–7 (2000).

    Google Scholar 

  9. B.S. Purkait, D. Ray, S. Sengupta, T. Kar, A. Mohanty, M. Misra, Ind. Eng. Chem. Res. 50, 871–876 (2011).

    Google Scholar 

  10. B.M. Cherian, A.L. Leão, S.F. Souza, L.M.M. Costa, G.M. Olyveira, M. Kottaisamy, E.R. Nagarajan, S. Thomas, Carbohydr. Polym. 86, 1790–1798 (2011).

    Google Scholar 

  11. C. Zhou, Q. Wu, Y. Yue, Q. Zhang, J. Colloid Interface Sci. 353, 116–123 (2011).

    Google Scholar 

  12. L.M. Nevárez, L.B. Casarrubias, O.S. Canto, A. Celzard, V. Fierro, R.I. Gómez, G.G. Sánchez, Carbohydr. Polym. 86, 732–741 (2011).

    Google Scholar 

  13. P. Samyn, M. Deconinck, G. Schoukens, D. Stanssens, L. Vonck, H. Van den Abbeele, Prog. Org. Coat. 69, 442–454 (2010).

    Google Scholar 

  14. E.M. Teixeira, A.C. Correa, A. Manzoli, F.L. Leite, C.R. Oliveira, L.H.C. Mattoso, Cellulose 17, 595–606 (2010).

    Google Scholar 

  15. R. Rusli, K. Shanmuganathan, S.J. Rowan, C. Weder, S.J. Eichhorn, Biomacromolecules 12, 1363–1369 (2011).

    Google Scholar 

  16. A. Mandal, D. Chakrabarty, Carbohydr. Polym. 86, 1291–1299 (2011).

    Google Scholar 

  17. Y. Boluk, R. Lahiji, L. Zhao, M.T. McDermott, Colloids Surf. A 377, 297–303 (2011).

    Google Scholar 

  18. P. Eronen, M. Österberg, S. Heikkinen, M. Tenkanen, J. Laine, Carbohydr. Polym. 86, 1281–1290 (2011).

    Google Scholar 

  19. M. Eita, H. Arwin, H. Granberg, L. Wågberg, J. Colloid Interface Sci. 363, 566–572 (2011).

    Google Scholar 

  20. F. Fahma, S. Iwamoto, N. Hori, T. Iwata, A. Takemura, Cellulose 18, 443–450 (2011).

    Google Scholar 

  21. W. Thielemans, C.R. Warbey, D.A. Walsh, Green Chem. 11, 531–537 (2009).

    Google Scholar 

  22. A.L. Da Róz, F.L. Leite, L.V. Pereiro, P.A.P. Nascente, V. Zucolotto, O.N. Oliveira Jr., A.J.F. Carvalho, Carbohydr. Polym. 80, 65–70 (2010).

    Google Scholar 

  23. A. Gandini, Macromolecules 41, 9491–9504 (2008).

    Google Scholar 

  24. A. Kaushik, M. Singh, G. Verma, Carbohydr. Polym. 82, 337–345 (2010).

    Google Scholar 

  25. D. Pasquini, E.M. Teixeira, A.A.S. Curvelo, M.N. Belgacem, A. Dufresne, Ind. Crops Prod. 32, 486–490 (2010).

    Google Scholar 

  26. F.L. Leite, P.S.P. Herrmann, A.L. Da Róz, F.C. Ferreira, A.A.S. Curvelo, L.H.C. Mattoso, J. Nanosci. Nanotechnol. 6, 2354–2361 (2006).

    Google Scholar 

  27. J.J.G. Van Soest, J.F.G. Vliegenthart, Tibtech 15, 208–213 (1997).

    Google Scholar 

  28. K. Poutanen, P. Forssell, Trends Polym. Sci. 4, 128–132 (1996).

    Google Scholar 

  29. W.M. Doane, C.Swanson, G. Fanta, Emerging polymeric materials based on starch, in Emerging Technologies for Materials and Chemicals from Biomass, ed. by R.M. Rowell, T.P. Schietz, R. Narayan. ACS Symposium Series 476 (American Chemical Society, Washington, 1992).

    Google Scholar 

  30. F.H.G. Peroni-Okita, R.A. Simão, M.B. Cardoso, C.A. Soares, F.M. Lajolo, B.R. Cordenunsi, Carbohydr. Polym. 81, 291–299 (2010).

    Google Scholar 

  31. H. Park, S. Xu, K. Seetharaman, Carbohydr. Res. 346, 847–853 (2011).

    Google Scholar 

  32. T. Ssaki, K. Kainuma, Plant Cell Rep. 3, 23–26 (1984).

    Google Scholar 

  33. A.J.F. Carvalho, A.E. Job, N. Alves, A.A.S. Curvelo, A. Gandini, Carbohydr. Polym. 53, 95–99 (2003).

    Google Scholar 

  34. C.G. Biliaderis, Food Technol. 46, 98–145 (1992).

    Google Scholar 

  35. J. Jane, S. Lim, I. Paetau, K. Spence, S. Wang, Biodegradable plastics made from agricultural biopolymers, in Polymers from Agricultural Coproducts, by M.L. Fishman, R.B. Friedman, S.J. Huang (American Chemical Society, Washington, 1994).

    Google Scholar 

  36. J.J.G. Van Soest, D.B. Borger, J. Appl. Polym. Sci. 64, 631–644 (1997).

    Google Scholar 

  37. M.J. Ridout, M.L. Parker, C.L. Hedley, T.Y. Bogracheva, V.J. Morris, Carbohydr. Polym. 65, 64–74 (2006).

    Google Scholar 

  38. A. Ptaszek, W. Berski, P. Ptaszek, T. Witczak, U. Repelewicz, M. Grzesik, Carbohydr. Polym. 76, 567–577 (2009).

    Google Scholar 

  39. P. Ptaszek, M. Grzesik, J. Food Eng. 82, 227–237 (2007).

    Google Scholar 

  40. H. An, H. Y., Z. Liu, Z. Zhang, Food Sci. Technol. 41, 1466–1471 (2008).

    Google Scholar 

  41. C.J. Grande, F.G. Torres, C.M. Gomez, O.P. Troncoso, J. Canet-Ferrer, J. Martínez-Pastor, Mater. Sci. Eng. C 29, 1098–1104 (2009).

    Google Scholar 

  42. U.V. Lay Ma, J.D. Floros, G.R. Ziegler, Carbohydr. Polym. 83, 1757–1765 (2011).

    Google Scholar 

  43. D. Raghavan, A. Emekalam, Polym. Degrad. Stab. 72, 509–517 (2001).

    Google Scholar 

  44. R.A.A. Muzzarelli, Chitin, By H.F. Mark, N.M. Bikales, C.G. Overberger, G. Menges, Encyclopedia of Polymers Science Engineering, 2nd edn. (Wiley, New York, 1985).

    Google Scholar 

  45. G. Roberts, Chitin Chemistry (Macmillan, London, 1992).

    Google Scholar 

  46. Y. Pronato, S.K. Rakshit, V.M. Salokhe, Food Sci. Technol. 38, 859–865 (2005).

    Google Scholar 

  47. M. Kocun, M. Grandbois, L.A. Cuccia, Colloids Surf. B 82, 470–476 (2011).

    Google Scholar 

  48. Q. Li, E. T Dunn, E.W. Grandmaison, M.F.A. Goosen, M. F. A, J. Bioact. Comp. Polym. 7, 370–397 (1992).

    Google Scholar 

  49. Y. Wang, L. Chen, Carbohydr. Polym. 83, 1937–1946 (2011).

    Google Scholar 

  50. A. Sionkowska, Prog. Polym. Sci. 36, 1254– 1276 (2011).

    Google Scholar 

  51. O.B.G. Assis, R. Bernardes-Filho, D.C. Vieira, S.P. Campana-Filho. Int. J. Polym. Mater. 51, 633–638 (2002).

    Google Scholar 

  52. F. Shahidi, J.K.F. Arachchi, Y-J. Jeon, Trends Food Sci. Technol.7, 373–377 (1999).

    Google Scholar 

  53. S. Roller, N. Covill, Int. J. Food Microbiol. 47, 67–77 (1999).

    Google Scholar 

  54. K. Kurita, Polym. Degrad. Stab. 59, 117–120 (1998).

    Google Scholar 

  55. A. Bégin, M-R.V. Calsteren, Int. J. Biol. Macromol. 26, 63–67 (1999).

    Google Scholar 

  56. X.D. Liu, N. Nishi, S. Tokura, N. Sakairi, Carbohydr. Polym. 44, 233–238 (2001).

    Google Scholar 

  57. N.S. Rejinolda, M. Muthunarayanana, K. Muthuchelianb, K.P. Chennazhia, S.V. Naira, R. Jayakumara, Carbohydr. Polym. 84, 407–416 (2011).

    Google Scholar 

  58. A. Sionkowska, Prog. Polym. Sci. 36, 1254–1276 (2011).

    Google Scholar 

  59. R.M.V. Kumar, React. Funct. Polym. 46, 1–27 (2000).

    Google Scholar 

  60. R.M.V. Kumar, Bull. Mater. Sci. 22, 905–915 (1999).

    Google Scholar 

  61. B. Krajewska, Enzyme Microb. Technol. 35, 126–139 (2004).

    Google Scholar 

  62. P.K. Dutta, J. Dutta, V.S. Tripathi, J. Sci. Ind. Res. 63, 20–31 (2004).

    Google Scholar 

  63. Y. Ping, C. Liu, Z. Zhang, K.L. Liu, J. Chen, J. Li, Biomaterials 32, 8328–8341 (2011).

    Google Scholar 

  64. S. Coelho, S. Moreno-Flores, J.L. Toca-Herrera, M.A.N. Coelho, M.C. Pereira, S. Rocha, J. Colloid Interface Sci. 363, 450–455 (2011).

    Google Scholar 

  65. T. Tree-udom, S.P. Wanichwecharungruang, J. Seemork, S. Arayachukeat, Carbohydr. Polym. 86, 1602–1609 (2011).

    Google Scholar 

  66. D. Kołodyńska, Chem. Eng. J. 173, 520– 529 (2011).

    Google Scholar 

  67. N.B. Milosavljević, M.D. Ristić, A.A. Perić-Grujić, J.M. Filipović, S.B. Štrbac, Z.L. Rakočević, M.T.K. Krušić, Colloids Surf. A. 388, 59–69 (2011).

    Google Scholar 

  68. J.T. Sakdapipanich, J. Biosci. Bioeng. 103, 287–292 (2007).

    Google Scholar 

  69. M.M. Rippel, F. Galembeck, J. Braz. Chem. Soc. 20, 1024–1030 (2009).

    Google Scholar 

  70. Z-F. Wang, Z. Peng, S-D. Li, H. Lin, K-X. Zhang, X-D. She, X. Fu, Compos. Sci. Technol. 69, 1797–1803 (2009).

    Google Scholar 

  71. C. W. Burr. Synthetic Polyisoprene (RT Vanderbilt Handbook, Ohio, 2004).

    Google Scholar 

  72. C.A.R. Costa, M.M. Rippel, F. Galembeck, Polímeros 12, 188–192 (2002).

    Google Scholar 

  73. Z. Adamczyk, M. Nattich, M. Wasilewska, Adsorption 16, 259–269 (2010).

    Google Scholar 

  74. J. Revilla, A. Elaissari, P. Carriere, C. Pichot, J. Colloid Interface Sci. 180, 405–412 (1996).

    Google Scholar 

  75. S. Fujii, M. Suzaki, Y. Nakamura, K. Sakai, N. Ishida, S. Biggs, Polymer 51, 6240–6247 (2010).

    Google Scholar 

  76. O. Couteau, G. Roebben, Meas. Sci. Technol. 22, 065101 (2011).

    Google Scholar 

  77. D. Wang, S. Fujinami, K. Nakajima, K-I. Niihara, S. Inukai, H. Ueki, A. Magario, T. Noguchi, M. Endo, T. Nishi, Carbon 48, 3708–3714 (2010).

    Google Scholar 

  78. D. Wang, S. Fujinami, K. Nakajima, S. Inukai, H. Ueki, A. Magario, T. Nogochi, M., Endo, T. Nishi, Polymer 51, 2455–2459 (2010).

    Google Scholar 

  79. H. Dohi, M. Sakai, S. Tai, H. Nakamae, H. Kimura, M. Kotani, H. Kishimoto, Y.M. Kobe, Test. Meas. 24–27 (2007).

    Google Scholar 

  80. I. Karapaginoutis, W.W. Gerberich, Surf. Sci. 594, 192–202 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Da Róz, A.L., de Castro Bueno, C., Yamaji, F.M., Brandl, A.L., de Lima Leite, F. (2012). Application of Atomic Force Microscopy in Natural Polymers. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology 3. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25414-7_10

Download citation

Publish with us

Policies and ethics